
Business-Driven Resource Allocation and
Management for Data Centres in Cloud

Computing Markets

Dissertation submitted

in partiall fulfillment of the requirements

for the degree of

Doctor per la Universitat Politècnica de Catalunya

by

Mario Maćıas

Advisor

Dr. Jordi Guitart

Technical University of Catalonia

Computer Architecture Department

May, 2014

“If I have seen further it is by standing on the shoulders of giants.”
Isaac Newton

To Juan and Mari Carmen, for lending me their shoulders.

Acknowledgements

First of all, I would like to strongly thank Dr. Jordi Guitart for his invaluable work
as my Ph.D. advisor during the past years of research. This thesis would never have
been possible without his patience and wise guidance.

I am also profoundly indebted to Dr. Jordi Torres who, with Dr. Guitart, has
been my mentor and eased my adaptation when I joined the Barcelona Supercom-
puting Center family.

I probably would have given up from finishing this thesis but for my colleagues
and friends at BSC and UPC and the happy moments we shared during lunch and
coffee times: Josep, Oriol, Enric, Augusto, René, Juan, Jonathan, Juanlu, Dani...
Also thanks for my siblings, who always helped me remember that there is a life
beyond science, computers and academy: Edu, Juan Carlos, Alba, John, Ariana,
Lúıs, Judit, Saúl, Marcos, Miquel, David, Dani...

Science is a long-term investment. We need many years of hard work to even-
tually see the impact of our contributions in the society. I would like to thank my
students at ETSETB because they have been my everyday immediate and posi-
tive impact. Also thanks for the people in Computer Architecture Department for
putting their confidence on me for teaching during the past years.

Last but not least, I would also like to thank the invaluable feedback from the
people that reviewed this thesis at its different stages: Dr. Felix Freitag, Dr. David
Carrera, Dr. Xavier León, Dr. Jens Nimis and Dr. Dirk Neumann.

This research has been possible thanks to the financial effort of the public insti-
tutions. This work has been supported by the Ministry of Science and Technology of
Spain and the European Union (FEDER funds) under contract TIN2007-60625, by
the Generalitat de Catalunya under contract 2009-SGR-980, and by the European
Commission under FP7-ICT-2009-5 contract 257115 (OPTIMIS).

1

2

Abstract

Cloud Computing markets arise as an efficient way to allocate resources for the
execution of tasks and services within a set of geographically dispersed providers
from different organisations. Client applications and service providers meet in a
market and negotiate for the sales of services by means of the signature of a Service
Level Agreement that contains the Quality of Service terms that the Cloud provider
has to guarantee by managing properly its resources.

Current implementations of Cloud markets suffer from a lack of information flow
between the negotiating agents, which sell the resources, and the resource managers
that allocate the resources to fulfil the agreed Quality of Service. This thesis estab-
lishes an intermediate layer between the market agents and the resource managers.
In consequence, agents can perform accurate negotiations by considering the sta-
tus of the resources in their negotiation models, and providers can manage their
resources considering both the performance and the business objectives. This thesis
defines a set of policies for the negotiation and enforcement of Service Level Agree-
ments. Such policies deal with different Business-Level Objectives: maximisation
of the revenue, classification of clients, trust and reputation maximisation, and risk
minimisation. This thesis demonstrates the effectiveness of such policies by means
of fine-grained simulations.

A pricing model may be influenced by many parameters. The weight of such
parameters within the final model is not always known, or it can change as the
market environment evolves. This thesis models and evaluates how the providers
can self-adapt to changing environments by means of genetic algorithms. Providers
that rapidly adapt to changes in the environment achieve higher revenues than
providers that do not.

Policies are usually conceived for the short term: they model the behaviour of
the system by considering the current status and the expected immediate after their
application. This thesis defines and evaluates a trust and reputation system that
enforces providers to consider the impact of their decisions in the long term. The
trust and reputation system expels providers and clients with dishonest behaviour,
and providers that consider the impact of their reputation in their actions improve
on the achievement of their Business-Level Objectives.

Finally, this thesis studies the risk as the effects of the uncertainty over the
expected outcomes of cloud providers. The particularities of cloud appliances as a
set of interconnected resources are studied, as well as how the risk is propagated
through the linked nodes. Incorporating risk models helps providers differentiate
Service Level Agreements according to their risk, take preventive actions in the focus
of the risk, and pricing accordingly. Applying risk management raises the fulfilment
rate of the Service-Level Agreements and increases the profit of the provider.

3

4

List of publications

The research results that have given rise to this thesis have been released as the
following publications:

• M. Maćıas, J.O. Fitó, and J. Guitart, “Rule-based SLA Management for Rev-
enue Maximisation in Cloud Computing Markets” in Proceedings of the 6th
IEEE/IFIP International Conference on Network and Service Management
(CNSM’10) (Short Paper), pp. 354-357. Niagara Falls, Canada, October 25-
29, 2010. ISBN: 978-1-4244-8908-4. doi:10.1109/CNSM.2010.5691226

• M. Maćıas and J. Guitart, “A Genetic Model for Pricing in Cloud Computing
Markets” in Proceedings of the 26th ACM Symposium On Applied Computing
(SAC’11), Special Track on Cloud Computing, pp. 113-118. Taichung, Taiwan,
March 21-24, 2011. ISBN: 978-1-4503-0113-8. doi:10.1145/1982185.1982216

• M. Maćıas and J. Guitart, “Client Classification Policies for SLA Negotia-
tion and Allocation in Shared Cloud Datacenters” in Proceedings of the 8th
International Workshop on Economics of Grids, Clouds, Systems, and Ser-
vices (GECON’11). Lecture Notes on Computer Science (LNCS), Vol. 7150,
pp. 90-104. Paphos, Cyprus, December 5, 2011. ISBN: 978-3-642-28674-
2 (print version), 978-3-642-28675-9 (electronic version), ISSN: 0302-9743.
doi:10.1007/978-3-642-28675-9 7

• M. Maćıas and J. Guitart, “Client Classification Policies for SLA Enforce-
ment in Shared Cloud Datacenters” in Proceedings of the 12th IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing (CCGrid’12),
pp. 156-163. Ottawa, Canada, May 13-16, 2012. ISBN: 978-0-7695-4691-9.
doi:10.1109/CCGrid.2012.15

• M. Maćıas and J. Guitart, “Cheat-proof Trust Model for Cloud Computing
Markets” in 9th International Conference on Economics of Grids, Clouds,
Systems, and Services (GECON’12). Lecture Notes on Computer Science
(LNCS), Vol. 7714, pp. 154-168. Berlin, Germany, November 27-28, 2012.
ISBN: 978-3-642-35193-8 (print version), 978-3-642-35194-5 (electronic ver-
sion), ISSN: 0302-9743. doi:10.1007/978-3-642-35194-5 12

• M. Maćıas and J. Guitart, “SLA Negotiation and Enforcement Policies for Rev-
enue Maximization and Client Classification in Cloud Providers” Future Gen-
eration Computer Systems journal (Elsevier). Available online, ISSN 0167-
739X, http://dx.doi.org/10.1016/j.future.2014.03.004.

5

In addition, the following manuscripts have been accepted but their publication
is still pending:

• M. Maćıas and J. Guitart, “Trust-aware Operation of Providers in Cloud
Markets” Short paper accepted in the 14th IFIP International Conference
on Distributed Applications and Interoperable Systems (DAIS 2014). Berlin,
Germany. June 2014

• M. Maćıas and J. Guitart, “A Risk-based Model for Service Level Agreement
Differentiation in Cloud Market Providers” Full paper accepted in the 14th
IFIP International Conference on Distributed Applications and Interoperable
Systems (DAIS 2014). Berlin, Germany. June 2014

Other publications

The baseline research used as background for this thesis has been released as the
following publications:

• M. Maćıas, G. Smith, O. Rana, J. Guitart, and J. Torres, “Enforcing Ser-
vice Level Agreements using an Economically Enhanced Resource Manager”.
Economic Models and Algorithms for Distributed Systems. D. Neumann, M.
Baker, J. Altmann, O.F. Rana (Eds.) Autonomic Systems Series Part II: Ser-
vice Level Agreements, Chapter 6, pp. 109-127. Birkhäuser-Springer, Decem-
ber 2009. ISBN: 978-3-7643-8896-6 (print version), 978-3-7643-8899-7 (elec-
tronic version) doi:10.1007/978-3-7643-8899-7 7

• M. Maćıas and J. Guitart, “Influence of Reputation in Revenue of Grid Service
Providers”, Proceedings of the 2nd International Workshop on High Perfor-
mance Grid Middleware (HiPerGRID’08), pp. 9-16. Bucharest, Romania,
November 21, 2008. ISSN: 2065-0701

• M. Maćıas, O. Rana, G. Smith, J. Guitart, and J. Torres, “Maximizing Rev-
enue in Grid Markets using an Economically Enhanced Resource Manager”.
Concurrency and Computation: Practice and Experience, Vol. 22 (14), pp.
1990-2011, September 2010 . ISSN: 1532-0626 (print version), 1532-0634 (elec-
tronic version). doi:10.1002/cpe.1370

• J. Guitart, M. Maćıas, O. Rana, P. Wieder, R. Yahyapour, W. Ziegler, “SLA-
based Resource Management and Allocation”. Market Oriented Grid and Util-
ity Computing. R. Buyya and K. Bubendorfer (Eds.). Part III: Policies and
Agreements, Chapter 12, pp. 261-284 . John Wiley & Sons, November 2009.
ISBN: 978-0-470-28768-2 (print version), 978-0-470-45543-2 (electronic ver-
sion). doi:10.1002/9780470455432.ch12

• M. Maćıas and J. Guitart, “Using Resource-level Information into Nonadditive
Negotiation Models for Cloud Market Environments”. Proceedings of the 12th
IEEE/IFIP Network Operations and Management Symposium (NOMS’10), ,
pp. 325-332. Osaka, Japan, April 19-23, 2010. ISBN: 978-1-4244-5367-2,
ISSN: 1542-1201. doi:10.1109/NOMS.2010.5488485

6

Contents

1 Introduction 17

1.1 Scenario Description . 18

1.2 Problem statement . 19

1.3 Requirements . 19

1.4 Solution approach . 20

1.5 Research questions and hypotheses 22

1.6 Methodology . 24

1.7 Contributions . 24

1.8 Thesis road map . 25

2 Background 27

2.1 Virtualisation . 27

2.2 Cloud workloads . 27

2.3 Quality of Service . 29

2.4 Economically Enhanced Resource Manager 30

2.4.1 Description of the Architecture 30

2.4.2 Key Features . 31

2.5 Negotiation Models . 32

2.5.1 SLA Model for negotiation and enforcement 33

2.5.2 On the usage of non-additive utility functions 34

2.6 Dynamic pricing . 35

2.7 Simulation environment . 38

2.7.1 Market-level brokers simulation 38

2.7.2 Resource fabrics simulation 40

3 Policy-Driven BLO Maximisation 45

3.1 Introduction . 45

3.2 Business-Driven SLA Negotiation and Enforcement 47

3.2.1 Policies for Revenue Maximisation 47

3.2.2 Policies for Client Classification 51

3.3 Evaluation . 53

3.3.1 Simulation environment . 54

3.3.2 Experimental results . 56

3.4 Conclusions . 66

7

4 Adaptive Pricing Policies 73
4.1 Introduction . 73
4.2 Applying genetic models to pricing 74

4.2.1 Definition of chromosomes . 74
4.2.2 Evaluation of chromosomes 75
4.2.3 Selection and reproduction of chromosomes 75

4.3 Evaluation of the model . 76
4.3.1 Simulation environment . 77
4.3.2 Comparing genetic and utility-based dynamic pricing 78
4.3.3 Comparing genetic providers by flexibility 79

4.4 Conclusions . 80

5 Trust and Reputation 83
5.1 Introduction . 83
5.2 Description of the reputation model 84

5.2.1 Previous definitions . 84
5.2.2 Dishonest behaviour towards the reputation model 86

5.3 Considering reputation during SLA negotiation 88
5.4 Considering reputation during SLA enforcement 89
5.5 Experiments . 90

5.5.1 Basic Provider-side reputation 91
5.5.2 Client-side reputation . 92
5.5.3 Effectiveness of Scoring function to allocate tasks 93
5.5.4 Reputation-aware resources operation 94
5.5.5 Context-aware resources operation 96

5.6 Discussion: implementing the model in a real market 98
5.7 Conclusions . 99

6 Risk Management 101
6.1 Introduction . 101
6.2 Multi-VM SLA negotiation . 102

6.2.1 OCCI Core model . 102
6.3 Risk Management . 102

6.3.1 Measuring risk in Cloud components 103
6.3.2 Measuring risk in complex appliances 103
6.3.3 Minimizing risk in Cloud systems 106

6.4 Revenue Modeling . 106
6.5 Evaluation . 108

6.5.1 Evaluating risk minimisation policies 109
6.5.2 Evaluating the modeling of the revenue 112

6.6 Conclusions . 113

7 Related Work 115
7.1 Market-oriented Utility Computing 115
7.2 BLO-Driven SLA negotiation . 117
7.3 BLO-Driven SLA management . 118
7.4 Adaptive pricing policies . 120
7.5 Risk Management . 121

8

7.6 Trust and reputation . 123

8 Conclusions and Future Work 125
8.1 Discussion: porting this thesis to current commercial Clouds 126
8.2 Future work . 127

9

10

List of Figures

1.1 Multi-layered architecture of the system of this Thesis 20

1.2 Relation of research topics, questions, and hypotheses 23

1.3 Research topics roadmap . 25

2.1 Sample pattern of Web workload . 28

2.2 General architecture of the EERM 31

2.3 Revenue of an SLA as a function of the violation time (Equation 2.1) 34

2.4 Firt attempts for defining urv(S) . 37

2.5 Utility histogram as a function of the price and the aggressiveness
factor for an SLA S . 38

2.6 Comparison of revenue between providers with static pricing and dy-
namic pricing . 39

2.7 Comparison of revenue between dynamic and fixed pricing when two
dynamic providers are in the market 39

3.1 Comparison of revenue when using PrMaxRM and PrDscAff policies 56

3.2 Comparison of average affinity when using PrMaxRM and PrDscAff

policies . 57

3.3 Comparison of Revenue when using different Ovrs policies 58

3.4 Comparison of Average affinity when using different Ovrs policies . . 58

3.5 Number of Violations when using different Ovrs policies 59

3.6 Affinity of the violations when using different Ovrs policies 59

3.7 Proportion of violations by QoS range when using OvrsQoS 60

3.8 Revenue for SLAV iol∗ . 61

3.9 Average affinity of violations for SLAV iol∗ 61

3.10 % of violations by QoS range with SLAV iolQoS 62

3.11 Average affinity of violations with SLACancAff 63

3.12 Percentage of violations by QoS range with SLACancQoS 63

3.13 Revenue for DynScal∗ . 64

3.14 Average affinity of violations for DynScal∗ 64

3.15 % of violations by QoS range with DynScalQoS 65

3.16 Revenue when triggering different RtMigr policies 66

3.17 % of violations by QoS range with RtMigrQoS 67

3.18 % of reduction of violations with RtMigr 67

3.19 Summary: Revenue improvement of each policy with respect to the
previously introduced policies . 69

3.20 Summary: Average affinity of SLA violations for each policy 69

11

4.1 Process of crossing two chromosomes and mix their genome in their
offspring. Genes with black background represent random mutations . 76

4.2 Comparison of revenues between four types of pricing. A provider
with a flexible genome (200 chromosomes and 6% of mutations) is used. 78

4.3 Comparison of revenues between four types of pricing. A provider
with a rigid genome (500 chromosomes and 1% of mutations) is used. 79

4.4 Comparison of revenues when genetic providers with both rigid and
flexible genomes are competing. 80

4.5 Difference between offer price and Exercise Price, and speed of con-
vergence, of a provider with a rigid genetic algorithm (upper graph)
and a provider with a flexible genetic algorithm (lower graph) 82

5.1 Function to multiply the trust to a given peer, based on its previous
report . 88

5.2 Evaluation of reputation of providers 92
5.3 Evaluation of trust to peers . 93
5.4 Evolution of reputation for three types of providers 95
5.5 Spot revenue of three types of providers 96
5.6 Evolution of reputation for three types of providers, including context-

aware policy switching . 97
5.7 Spot revenue for three types of providers, including context-aware

policy switching, during and after an outage 98

6.1 Basic architecture of a web application 108
6.2 Probability of Failure of resources over time 109
6.3 Average age of resources for different SLA policies 110
6.4 Average PoF for different SLA policies 111
6.5 Average violation percentage per SLA 111
6.6 Average price per CPU hour . 112
6.7 Average net profit per CPU hour . 113

12

List of Tables

1.1 Requirements addressed by the different research topics 22

3.1 Definition of symbols used in Sections 3.2.1 and 3.2.2 48
3.2 Values of the parameters for the simulations 55

5.1 Values of the Trust Ponder Vector for each group of clients 94

6.1 Revenue function values for each group of SLAs (Equation 2.1) 109

13

14

Abbreviations and acronyms

BLO Business-Level Objective
CPU Central Processing Unit

EERM Economically Enhanced Resource Manager
IT Information Technology

I/O Input and Output
IP Infrastructure Provider

OCCI Open Cloud Computing Interface
P2P Peer-to-Peer
PoF Probability of Failure
SLA Service Level Agreement
SLO Service Level Objective

SP Service provider
QoS Quality of Service
VM Virtual Machine

15

16

Chapter 1

Introduction

Traditionally, academic and scientific entities as well as some companies owned big
mainframes that had to be shared by their users to satisfy their computing require-
ments. These systems were managed centrally, considering performance metrics:
throughput, response time, load-balancing, etc. The big mainframes paradigm [1]
is transiting to a utility-driven paradigm [2], where users do not own their resources
and pay for the usage of remote resources. The main advantage is that users do
not require spending neither an initial expenditure nor maintenance costs for the
hardware, and pay only for the capacity that they are using in each moment. Cloud
Computing [3] is currently the most successful implementation of Utility Computing.

The complexity of finding the optimal resource allocation in data centres is grow-
ing very quickly because of the popularisation of the Cloud Computing paradigm.
Complex and varied workloads (CPU-intensive, network-intensive, data-intensive...)
are allocated in heterogeneous resources that are being continuously plugged or re-
moved during their life cycle. Multiple, remote users access the provider, and every
one have their own preferences, which can be in conflict with the preferences of other
users. In addition, the idea of business introduces new high-level metrics that have
to be considered, such as Quality of Experience and Quality of Business [4]. These
metrics can be quite different for every provider and client.

Considering these arguments, large systems seem to be too complex to be man-
aged centrally. This thesis adopts Market-Based Resource Allocation and
Management as a decentralised paradigm to deal with the complexity such het-
erogeneous scenario. The main reasons are listed herewith:

• The possibility of doing business will motivate service providers to offer their
resources in the system and give a Quality of Service (QoS) according to their
real capacity.

• We can let the users reserve a spatial and temporary portion of the system,
and market mechanisms will motivate them to adjust their allocation to their
real requirements.

• It can be implemented in a decentralised architecture [5].

• It is less complex to manage, because participants enter in the market looking
for the satisfaction of their own necessities, and they do not need to know the
global status of the system to maximise their utility.

17

Although this market model is not common in current commercial Cloud providers
(e.g. Amazon Elastic Computing Cloud [6] or Windows Azure [7]), it relies in re-
search proposals for creating a market place of computing resources [5, 8, 9] and
could be potentially applicable to real scenarios.

1.1 Scenario Description

In Cloud Market architectures [5], Brokers that represent Service Providers or
Clients meet in a market to sell or buy their services and resources. When the
clients find there their necessities, a negotiation process is started to establish
the terms of the contract, such as QoS, price, time slots, etc. If both parts reach
an agreement, the terms of the contract are specified in a Service Level Agreement
(SLA) and the client application can use the bought resource. If the SLA terms are
not correctly provided, the provider must pay a penalty to the client.

Tasks that are submitted to the Cloud Markets are matched with available re-
sources according to the economic preferences of both resource providers and con-
sumers. This means that the classic job scheduler, which is driven by performance
goals, is replaced by a set of self-organising, market-aware brokers that negotiate
SLAs to determine the resource allocation that best fulfils both performance and
business goals.

Traditional clusters and grids are managed to achieve IT-related objectives such
as maximizing throughput or minimizing the execution time of the tasks. With the
success of Cloud Computing as business model, a set of market-related metrics have
arisen to ensure the economic feasibility of the cloud: the Business-Level Objectives
(BLOs). The BLOs are conditioned by the business strategy of a cloud provider (e.g.
satisfying customers, beating the competition and/or operating resources efficiently)
and quantify some high-level metrics that are described in economic terms. For
example, this thesis considers the following BLOs, that will be quantified in their
corresponding chapters:

Profit Maximisation. The most common objective of a business is to maximise
the economic profit. There are diverse means to maximise the profit of a
cloud provider: increasing the number of clients, increasing margin of benefit
by raising prices or lowering costs, minimise the number of violations, and so
on. Some policies are conflicting between them. The cloud provider must be
able to apply them appropriately, according to its current status.

Client Classification. This BLO aims to differentiate the pricing and QoS policies
among different users that can coexist simultaneously in the same resources.
For example, clients from different organisations or clients with different QoS
requirements.

Risk Minimisation. There are many situations that can raise the risk of operation
within Clouds. Overloading resources or operating with old resources may have
a direct impact in the provided QoS and, in consequence, in the revenue of a
provider due to the payment of penalties if the SLAs are not fulfilled.

18

Trust and Reputation. In a market under competition, the QoS that is provided
to clients may have an impact in its reputation. Maximizing the reputation
of a provider will lead to increasing the number of clients that are willing to
host their services in that provider.

Cloud provider QoS-related metrics have a direct impact on the BLOs. In con-
sequence, tasks must be allocated and managed to maximise the achievement of the
BLOs.

The maximisation of the profit is the common objective for any business-oriented
company. However, we need to differentiate the objective of a company from the
BLOs. The BLOs will define the strategy to achieve the final objective of the
company. This thesis will show that Profit Maximisation is not the unique BLO
that increases the economic profit of a Cloud provider. The BLOs that are related
with Risk Minimisation, Trust & Reputation Maximisation and Client Classification
lead to increasing the economic profit of the provider.

1.2 Problem statement

We notice a management gap between traditional, technical layers of the system
(classical schedulers and resource managers) with the new emerging business lay-
ers. A Cloud Computing provider has several BLOs that may often be conflicting
between them, as well as with other technical metrics. Dimensioning resources to
provide the maximum QoS can increase trust and decrease risk, but may lead the
provider to decrease the profit or even having economic losses. Likewise, the busi-
ness decisions of the provider brokers may be inaccurate if they do not consider the
information about the resources that they are selling.

The main objective of this thesis is to come up with a business-driven
Cloud framework that allows Cloud Providers to deal with the complexity
of maximizing their Business-Level Objectives while providing the agreed
rate of Quality of Service to their clients.

1.3 Requirements

To be effective in the target scenario and provide the intended benefits, a business-
driven Cloud framework should exhibit the following properties according to the
requirements raised in high-impact publications [3, 10, 11]:

R1. Support heterogeneous workloads (CPU-intensive, network-intensive, data-in-
tensive...), workloads with different patterns (batch workloads that are nearly
constant or web workloads that vary depending of the time of the day), and
workloads with different scheduling constraints (web workloads must be real
time, batch workloads can be delayed for some minutes or even hours).

R2. Adaptiveness to the infrastructure changes when new resources are plugged in,
other resources are removed or temporarily fail.

R3. Support a broad range of provider patterns according to their multiple BLOs.
R4. Achieve high resource utilisation and efficiency in the performance metrics.

19

Figure 1.1: Multi-layered architecture of the system of this Thesis

R5. The fulfilment rate of BLOs and QoS must be degraded gracefully during over-
loads and system failures.

R6. Accommodate different policies for task allocation and operation.
R7. Reliable behaviour despite of the unpredictability of the environment.
R8. Work with incomplete and/or inconsistent information.
R9. Policies must maximise the objectives both in the short and the long term.

1.4 Solution approach

This thesis proposes to establish an intermediate layer that enables bidirectional
communication between business and resources layers to improve the technical and
business performance of both: business decisions can be more precise if the brokers
have both real-time and historical information about the resources, and resource
management decisions can help achieving the business objectives of the provider
if the Resource Managers consider economic models and policies in their decisions.
The gap between the Market and the Resource Fabrics is filled by adding an interme-
diate layer: the Business Processes Layer (Figure 1.1), which enables bi-directional
communication between Market and Resource Fabrics.

This layered model is inspired by the work of Moura et al. [12] and is divided in
three main layers:

Resource Fabrics Layer. Provides the hardware infrastructure to run the jobs
and services that will be offered to the clients.

Business Processes Layer. Those processes which depend on Resource Fabrics,
directly or indirectly. This layer captures how technical metrics or events affect
changes in business metrics or vice-versa [13, 14, 15]. This layer also will assist
in the calculation of business metrics for the Market Layer.

20

Market Layer. Models business entities and behaviours, such as the brokers of
client and provider.

The Business Processes Layer contributes to maximise the achievement of the
Business-Level Objectives for a particular provider. The BLOs can vary across
the different providers. This layer will combine the purely economic knowledge
(because is in direct contact with the economic layers of the marketplace) and the
plain resources management (because it manages directly the resource fabrics) to
help brokers to perform better negotiations and enforce the resource management,
not only having into account performance but also business goals.

Considering the aforementioned requirements and the BLOs that the Business
Processes Layer is dealing with, this thesis defines five research topics to improve
the economic feasibility of Cloud Computing by means of the establishment of an
intermediate layer that considers the information flow between Market and Resource
layers:

Policy-driven BLO Maximisation. This thesis aims to implement economic mod-
els and business knowledge for the negotiation and enforcement of SLAs to
fulfil BLOs. Resource information is crucial to perform accurate negotiations
that report benefits to the provider while fulfilling the SLAs. Business knowl-
edge is used to make economically sound decisions when allocating, migrating,
pausing or cancelling tasks.

Revenue Management. This thesis intends to be a step forward is the manage-
ment of the revenue, which is performed at two stages: negotiation time, pro-
viding the most suitable prices to acquire the sales despite of the competition
in the market; and execution time, managing the resources to maximise the
economic profit. Results will show how implementing new dynamic methods
for negotiation and enforcement increase the economic profit of the provider.

Client Classification. This thesis proposes client classification according to two
facets: internal/external users and users with different levels of QoS. Providers
that share their spare resources with external users to help amortizing the cost
of the resources may want to do a prioritisation of users in terms QoS and
pricing. To maximise the profit, providers may provide different levels of QoS.
Users with high-level of QoS will have higher SLA fulfilment guarantees, and
they will pay higher prices than users with low-level of QoS.

Trust Management. This thesis includes new mechanisms to force both clients
and providers to fulfil their agreed SLAs, by providing historical information
about the negotiating parties that will help decide if a particular client or
provider is trustworthy or not. This thesis shows that these aspects have a
strong correlation with the achievement of Business Objectives.

Risk Management. This thesis introduces a new model to quantify the uncer-
tainty on typical cloud services, and how it influences the achievement of the
QoS. The model considers how risk is propagated through cloud appliances,
which usually are a composition of cloud resources that are linked between
them. This information is used during the assessment of the SLA negotiation

21

Requirement P
ol

ic
y-

dr
iv

en

R
ev

en
ue

C
lie

nt
C

la
ss

if.

T
ru

st

R
is

k

R1. Heterogeneous workloads • • •
R2. Adaptiveness to change •
R3. Multi provider patterns • • • • •

R4. High resource utilisation • • •
R5. Graceful degradation • •

R6. Multiple policies •
R7. Reliable behaviour • •

R8. Support information lack • •
R9. Long-term • •

Table 1.1: Requirements addressed by the different research topics

and enforcement, and enables strategies to mitigate risk with lower economic
costs than applying full redundancy to the system.

Table 1.1 summarises how these research topics contribute to fulfil the various
requirements we have identified.

1.5 Research questions and hypotheses

During the inception of each research topic, the following research questions have
been raised:

Q1. Can Cloud market brokers improve the accuracy of their negotiations in the
Cloud Market infrastructure?

Q2. Can Cloud providers improve their business performance by means of ade-
quately managing the tasks within the resource fabrics?

Q3. How can providers automatically adapt their behaviour to changing environ-
ments such as markets?

Q4. Can Cloud providers improve their business by considering other BLOs differ-
ent than short-term economic profit?

Q5. How can Cloud Providers deal with the uncertainty and the lack of informa-
tion?

Based on the solution approach described in the previous section, this thesis
respond the research questions by formulating the following hypotheses:

H1. Both resources and market layers can collaborate to maximise their BLOs
by exchanging information during their operation. Resource-level informa-
tion will help improving the negotiations. Business-level information will help
improving the management of the tasks.

22

Policy-driven BLO Maximisation

Revenue Management

Client Classification

Trust Management

Risk Management Q5

Q4

Q3

Q2

Q1

H1

H2

H3

H4

Figure 1.2: Relation of research topics, questions, and hypotheses

H2. Cloud providers can adapt their behaviour to changing market environments
if they are provided with models and policies that consider both quantitative
and qualitative changes in the environment.

H3. Cloud providers can improve their mid and long-term Quality of Business if
they consider other BLOs that are not directly related with the revenue.

H4. Quantifying the uncertainty and considering its effect over the objectives will
improve the accuracy of the business policies.

Figure 1.2 summarizes how questions and hypotheses are related with the afore-
mentioned research topics. Hypothesis H1 responds to questions Q1 and Q2, which
are transversally addressed by three of the research topics that were described in the
previous section: Revenue Management topic models a set of business metrics that
are related with the economic profitability of cloud provisioning; Client classification
topic differentiates the potential clients into groups according to their affinity to the
provider or the level of QoS they require; Policy-driven BLO Maximisation defines a
set of policies that aim to allow providers maximizing their business metrics, during
both the allocation of tasks at negotiation and their management during runtime.

Hypothesis H2 responds to question Q3, which is also addressed by Policy-driven
BLO Maximisation research topic, which provides an evolutionary model to define
pricing policies that are able to self-adapt to the environment.

Hypothesis H3 responds to question Q4, which raises Trust Management as a
research topic. This thesis defends that keeping high rates of trust and reputation
within the market increases the long-term revenue of a provider.

Hypothesis H4 responds to question Q5, which is related with Risk Management.
This thesis studies the impact of the uncertainty over the achievement of the BLOs
of a provider and proposes minimizing risk by means of preventive measures that
are economically feasible.

23

1.6 Methodology

This thesis follows an iterative research methodology. Considering the background
knowledge (Chapter 2) as baseline, the following iterative process is engaged for
each of the research hypotheses:

1. Definition of the goals for a research topic that aims to verify an hypothesis.
2. Definition of a set of models and/or policies to deal with the research objec-

tives.
3. Experimental evaluation.
4. Are the results satisfactory? If not, use the feedback from the experiments to

assess and improve steps 1 and 2, and repeat step 3.
5. State the conclusions, and use them as input for further research goals.

1.7 Contributions

The transversal objective of this thesis is to contribute to the understanding on
how to improve the Quality of the Business of Cloud providers according to their
Business-Level Objectives. This objective is addressed by adding an intermediate
Business Processes layer to fill the management gap between Market and Resource
Fabrics layers. This layer provides information the brokers to perform effective
negotiations and coordinate resource managers to fulfil the BLOs at the same time
they provide the agreed QoS. This overall objective is achieved by means of the
following specific contributions:

• Set of policies for SLA negotiation and enforcement to deal with different BLOs
while maximizing the fulfilment rate of the QoS that has been agreed with the
users, independently from the system status. Such policies include overselling
of resources, selective violation of SLAs, migration of Virtual Machines (VMs)
and redistribution of resources at runtime.

• Revenue model that is suitable for Cloud Computing and incorporates the
BLOs considered in this thesis. This revenue model considers the market and
resource status, risk, quality of service, as well as accounting information like
resources amortisation.

• Categorisation of clients that can coexist in a single cloud provider according
to their affiliation and QoS needs. Differentiation between clients during nego-
tiation and enforcement policies to maximise the fulfilment of their individual
needs.

• Modelling of adaptive behaviour through changing market environments by
means of evolutionary algorithms that allow provider brokers autonomously
learn what the relevant parameters that influence prices are and how to weight
them.

• Trust and reputation model that expels dishonest providers and clients from
the market. Evaluation of how reputation influences revenue and incorporation
of such model within the provider policies to maximise profit in the long term.

24

• Model to calculate the propagation of risk in cloud services. The model is
used to assess SLAs negotiation and enforcement and triggering strategies to
mitigate risk without proportionally increasing prices.

1.8 Thesis road map

This thesis is structured as follows. After the description of the background knowl-
edge in Chapter 2, Chapter 3 enumerates the set of policies that are used to maximise
two BLOs: Revenue Maximisation and Client Classification. However, Chapter 3
raises some open issues that are addressed in later chapters. Figure 1.3 shows how
the aforementioned issues are related with the respective chapters of this thesis.

Figure 1.3: Research topics roadmap

The policies of Chapter 3 rely on some constant values that must be tuned by
the system administrator. This would be ineffective because the changes in the
environment would require to periodically check if these values are still valid and
recalculate them manually. To deal with this issue, Chapter 4 defines a model to
describe policies that can easily adapt to changing market scenarios by means of
genetic algorithms.

The same policies of Chapter 3 consider only the immediate impact of the ac-
tions in the BLOs. For example, violating the SLAs that report low revenue would
free resources to fulfil SLAs that report high revenue, and that would increase the
immediate economic profit of the provider. However, this action would decrease
the trustworthiness of the provider and report mid-term economic penalties because
clients will allocate their tasks in trustworthy providers. Chapter 5 defines a decen-
tralised trust and reputation system and incorporates it within a set of policies to
allow providers to consider the mid-term consequences of their decisions.

Chapter 3 considers the cloud applications as sets of isolated VMs as if they
would not have any relation between them. This may be correct for some workloads,
but it is inaccurate for heterogeneous services that are composed by linked VMs
of different nature (disk-intensive applications, CPU-intensive workloads, variable
web workloads...). Chapter 6 models the effect of the uncertainty and the risk
propagation within cloud appliances, and how they influence the achievement of the
business objectives. Chapter 6 also proposes a revenue model that fits with the risk
model and complements the revenue models from previous chapters.

25

After the chapters that describe our research, this thesis exposes the related work
in Chapter 7 and states the conclusions of the research, pointing some future lines
of research in Chapter 8.

26

Chapter 2

Background

This chapter describes the baseline concepts and economic models used as starting
point for this thesis.

2.1 Virtualisation

This thesis relies on Virtualisation [16] as a core technology that enables the ex-
ecution of some of the policies and models that are introduced here. Hardware-
supported virtualisation allows simultaneously executing full operating systems as
guests within a single hardware node. The impact in the overall performance is
affordable for most workloads and not significant for tasks with low intensity of I/O
operations [17, 18].

This thesis models virtualised hosts because virtualisation brings the following
advantages for both Clients and Cloud Providers:

1. Physical resources can be shared transparently to the clients, which are isolated
as if each client were using a dedicated physical host. Virtualisation allows
common users to get administrative permissions to configure the operating
system, networking, and to install and uninstall software packages.

2. The resources (for example, CPU or Memory) can be dynamically assigned
and unassigned to the Virtual Machines (VM) at runtime. In addition, VMs
can be paused and resumed transparently to the user. That helps fulfilling the
SLAs during unexpected peaks of load.

3. Virtual Machines can easily migrate between physical resources at runtime.
The migration is transparent to the user. Migration allows distributing VMs
at runtime across the resources to help maintaining the QoS levels. Migration
also allows consolidating VMs at runtime in a single node to save energy costs.

2.2 Cloud workloads

The flexibility of Cloud Computing and its success as a business model involves
that users with diverse workload requirements access the cloud. Tasks handled by
clouds may be CPU-intensive, I/O intensive, memory-intensive, disk-intensive, or

27

Figure 2.1: Sample pattern of Web workload

even a combination of them. This thesis considers two types of workloads that are
very differentiated: web workloads and batch workloads [19]. Both workloads follow
different patterns and their particularities must be considered during the allocation
and enforcement of the SLAs.

Web workloads vary depending on the hour of the day or the day of the week:
there are more requests from Monday to Friday evening than during the late night
or the weekend. The Web workload pattern corresponds to the access log of an ISP
within our university domain1.

Web workloads may be multi-tiered, and may use several types of resources,
such as CPU, network bandwidth, disk, etc. For example, a web workload could
be composed by a VM to handle the web requests and show the web interface
(network-intensive), which is connected to a VM that contains an application server
(CPU-intensive) that continuously queries a database server (memory-intensive).

In web workloads, the response time is critical, because users are interacting
with the application in real time. Low QoS would entail bad user experience, which
directly would affect to the revenue of business because part of the final users would
stop using the web application [20].

Batch workloads are relatively static in terms of resource consumption, because
they do not depend on when users are connected to the application. They may use
several types of resources according to their nature (traditional scientific workloads,
data analysis, data indexing, etc.). This thesis mainly considers CPU-intensive
applications as they were used in Cluster[1] and Grid[21] computing.

Batch workloads do not have real-time requirements as Web workloads. De-
pending on the user requirements and deadlines, their execution can be delayed
to off-peak hours, such as nights or weekends. Moving batch workload to off-peak
hours can benefit from better QoS and lower prices in providers that consider the
current load in the system when negotiating the prices, as the provider introduced
in Chapter 3.

This thesis adopts both workloads in Chapter 3 because we were interested on
measuring how Cloud Markets behave if they adopt classical Grid (batch) workloads.
In the following chapters we focused mainly on web workloads because they are more
complex from an economic point of view because of their variability (they depend on
the hour and day), complexity (may be composed by several VMs with a particular
link topology) and heterogeneity (VMs can be CPU-intensive, network-intensive,

1The exact data source cannot be disclosed due to confidentiality reasons

28

disk-intensive, etc.).

2.3 Quality of Service

Quality of Service (QoS) has been explored in various contexts [22, 23]. Two types
of QoS attributes can be distinguished: those based on the quantitative, and those
on the qualitative characteristics of the Cloud infrastructure. Qualitative character-
istics refer to aspects such as service reliability and user satisfaction. Quantitative
characteristics refer to aspects such as network latency, CPU performance, or stor-
age capacity. For example, the following are quantitative parameters for network
QoS: delay (the time it takes a packet to travel from sender to receiver), throughput
(the rate at which packets go through the network), packet-loss rate (the rate at
which packets are dropped, lost, or corrupted). Although qualitative characteristics
are important, it is difficult to measure these objectively. Systems that are focused
on the use of such measures utilise user feedback [24] to compare and relate them
to particular system components. Ultimately, each qualitative characteristic should
be expressible in terms of measurable, quantitative characteristics. For instance,
user satisfaction should somehow map into parameters such as CPU performance
and network latency. However, a key difference between these two is the different
viewpoints on qualitative characteristics that would be held by different users or
applications. Some may view an access time of 2ms (a quantitative characteris-
tic), for instance, to constitute a slow service (a qualitative characteristic), whereas
others may view a service of 4ms to be slow. Hence, qualitative characteristics
represent a comparative viewpoint held by a user/application, and may be hard to
generalise across different application domains and users. Our focus is primarily on
quantitative characteristics.

Similarly, compute QoS can be specified based on how the computational (CPU)
resource is being used – i.e. as a shared or an exclusive-access resource [25]. We
consider shared-access systems that could map each CPU to many different VMs.
The application can specify the number of CPUs as a QoS parameter. In shared-
access, if a VM is not using the 100% of a CPU, the spare CPU cycles may be used
by another VM.

Storage QoS is related to access to devices such as primary and secondary disks
or other devices such as tapes. In this context, QoS is characterised by bandwidth
and storage capacity. Bandwidth is the rate of data transfer between the storage
devices and the application program reading/writing data. Bandwidth is dependent
on the speed of the bus connecting the application to the storage resource, and
the number of such buses that can be used concurrently. The number and types
of parallel I/O channels available between the processor and the storage media are
significant parameters in specifying storage QoS. Capacity is the amount of storage
space that the application can use for writing data.

It is necessary for applications to specify their QoS requirements as the charac-
teristics of a set of resources that are necessary to run their applications (compute,
storage and network), and the period over which the resource is required. Resource
reservation provides one mechanism to satisfy the QoS requirements posed by an
application user, and involves giving the application user an assurance that the re-
source allocation will provide the desired level of QoS. The reservation process can

29

be immediate or undertaken in advance, and the duration of the reservation can be
definite (for a defined period of time) or indefinite (from a specified start time and
till the completion of the application).

2.4 Economically Enhanced Resource Manager

The problem raised in this thesis is faced through an Economically Enhanced Re-
source Manager (EERM) [14, 15], an intermediary layer between the IT resource
manager of a Cloud Computing provider and the brokers in the market. The over-
all aim of the EERM is to isolate economic layers from the IT complexity and to
orchestrate both business and performance goals to achieve maximum fulfilment of
the BLOs

To provide a general solution that supports different scenarios and business poli-
cies, the EERM should provide flexibility in defining user (administrator) config-
urable rule-based policies, to support:

Individual Rationality An important requirement for a system is that it is indi-
vidually rational on both sides, i.e. both providers and clients have to have
a benefit from using the system. This is a requirement for the whole system,
including features such as client classification or dynamic pricing.

Revenue Maximisation A key characteristic for providers is revenue (utility)
maximisation. The introduced mechanisms can indeed improve the utility
of both provider and client.

Incentive Compatibility Strategic behaviour of clients and providers can be pre-
vented if a mechanism is incentive compatible. It means that no other strategy
results in a higher utility than reporting the true valuation.

Efficiency There are different types of efficiency. The first one considered here
is Pareto efficiency: no participant can improve its utility without reducing
the utility of another participant. The second efficiency criterion is allocative
efficiency: i.e. the EERM must maximise the sum of individual utilities.

2.4.1 Description of the Architecture

Figure 2.2 depicts the architecture of the EERM:

Negotiation. This component interacts with the clients in order to perform the
resource allocation and pricing that fits best within its own objectives.

Risk Management. Considers both market and resources information to manage
the risk associated to determined actions: resources allocation, services com-
position, etc. The risk is considered during the negotiation and management
of the tasks.

SLA Enforcement. Keeps track of tasks executed in the system and continuously
watches the status of their SLAs. If SLAs are being violated it triggers reactive
measures to minimise the economic and technical impact of the violations.

30

Figure 2.2: General architecture of the EERM

Resource Fabrics Management. It is an interface to the resources pool, and
orders the creation, destruction or modification of the Virtual Machines that
handle the sold tasks. However, under certain events like the overload of the
system, it can trigger certain rules that can describe some business-driven
actions.

Business Monitoring. It monitors the correct fulfilment of the BLOs. If it pre-
dicts that the objectives will not be achieved, it changes dynamically the
Business Strategy and Rules. This component will be treated in future work.

2.4.2 Key Features

Task Cancellation. This feature is needed to ensure quality of service in situations
where problems arise, i.e. parts of the Grid fail or the estimations of the
utilisation were too optimistic. This feature is part of the SLA Enforcement.

Quality of Service. Quality of service is introduced with the help of a number
of components. First of all the Risk Management component calculates the
expected impact of a task on the utilisation. If there is not enough capac-
ity for the task or the task would lead to capacity problems for other tasks,
this information is sent to the Negotiation component, which usually rejects
the task. However it can also instruct the Resource Fabrics manager to free
capacity.

The SLA Enforcer also has another key role in ensuring quality of service.
When it detects that one or more SLAs cannot be fulfilled, it suspends or
cancels tasks until the remaining SLAs can all be kept. This is done considering

31

the penalties resulting from cancellation or the suspension of tasks and policies
(e.g. regarding client classification).

Dynamic Pricing. Another enhancement is dynamic pricing based on various fac-
tors. Yeo and Buyya [26] presented an approach for a pricing function depend-
ing on a base pricing rate and utilisation pricing rate. However the price can
depend not only on current utilisation but also in projected utilisation, client
classification, projected demand, etc. An option is to include the impact a
task has on the utilisation of the Grid in the price calculation. For example
when an incoming task leads to a utilisation above certain thresholds a higher
price is charged.

Negotiation and Risk components are involved in dynamic pricing. The Ne-
gotiator dynamically calculates prices according to the resources utilisation,
projected demand, etc. The Risk Manager delivers to Negotiator the estimated
performance impact of the task, the expected resource usage of the task and
a projected utilisation for the time frame in which the task is executed.

Client Classification. The main differentiation factors in the EERM are priority
on task acceptance and quality of service. Price discrimination is also fea-
tured and different policies for pricing can be introduced, according to the
particularities of each client.

Live Migration of Virtual Machines. The allocation and dimension of tasks
within the resources relies on predictions about the future fulfilment of BLOs
from the Cloud Provider. However, if the predictions are not accurate enough
or the BLOs change, the provider must reallocate the tasks within the resources
pool. For example, consolidating VMs would allow provider to minimise costs
and distributing VMs would allow provider to minimise risks.

2.5 Negotiation Models

Brokers that negotiate to buy and sell Cloud resources are autonomous agents. They
communicate between them and make decisions without human intervention. This
thesis provides them with some business models and intelligent behaviour so they
are able to make the best decisions for their represented actors in the Market (Client
applications or Service Providers) and maximise their utility.

When a Provider Broker negotiates an SLA with a Client Broker, it considers
some economic terms, such as price, penalties for contract violation, etc. In addition,
there are other terms in the SLA, which are essentially technical, and can also have
influence in the economic terms, especially those related with the Quality of Service
(QoS) (e.g. throughput) or those related with the sales of plain resources (e.g.
number of CPUs). For a purely economical Provider Broker, it is very difficult to
quantify the QoS terms of the SLAs, since it has not enough technical knowledge
about the status and punctual capacities of the resources. This information allows
determining if a task can be executed or not, and the minimum price to make this
task profitable for the Provider.

32

This section models and characterises the negotiation process to perform sophis-
ticated sales in Market-Based Cloud Computing depending on the desirable objec-
tives. This process uses resource-level knowledge to support economic negotiations.

2.5.1 SLA Model for negotiation and enforcement

Before the negotiation starts, the Cloud Provider must register its offered services
into the Market (e.g. computing, storage), by providing some semantic information
that allows identifying the service and its functionalities. It also provides an ex-
tra meta-SLA with some data about the SLA terms (also known as Service Level
Objectives, SLOs) that the Service Provider is willing to negotiate.

When a Client Broker wants to acquire a service, it queries the Market by provid-
ing some semantic information, and gets a list of the Service Providers that match
the requirements (every Provider has its own EERM) and the meta-data about the
negotiable SLA terms.

Before starting the negotiation the Client Broker selects the suitable Providers,
and creates a proposal of agreement for each one; using the meta-data it creates
an uncompleted SLA with its requirements, and leaves other SLOs as void. When
the EERM receives the SLA proposal, it evaluates if the proposed terms can be
accepted. If the Client Broker received an acceptance message or a counteroffer
from the EERM, it evaluates it and finishes with the acceptance or the rejection of
the SLA.

Each provider owns a set of N physical machines. Each physical machine can
host several VMs that execute tasks, such as Web Services or Batch Jobs. The SLA

of a task is described as SLA = {Rev(vt),
−→
S ,∆t, C}:

• Rev(vt) is a revenue function that describes how much money the provider
earns or loses after finishing correctly or incorrectly a task. The Violation
Time (vt) is the amount of time in which the provider has not provided the
agreed QoS to the client. Let MP be the Maximum Penalty (is a negative
revenue: the lower MP the higher penalties), MR the Maximum Revenue,
MPT the Maximum Penalty Threshold, and MRT the Maximum Revenue
Threshold, Equation 2.1 describes the revenue function. If vt < MRT the SLA
is not violated (0 violations); if vt > MPT , the SLA is completely violated
(1 violations). MPT > vt > MRT implies a partial violation (vt−MRT

MPT−MRT

violations).

Rev(vt) =
MP −MR

MPT −MRT
(vt−MRT) +MR (2.1)

This equation allows a grace period where the provider can violate the SLA
without being penalised. When vt surpasses the MRT threshold, the revenue
linearly decreases (see Figure 2.3) as a function of vt. The Maximum Penalty
MP is defined for avoiding infinite penalties. Client and provider can negotiate
the values of MRT , MR, MPT , MP for establishing different QoS ranges for
the clients, which report different revenues and penalties for the providers [27].

•
−→
S describes the QoS of the purchased service. It can be defined in terms
of high-level metrics: throughput, response time, and so on; or in terms of
low-level quantitative metrics (CPUs, memory, disk, network...)

33

Figure 2.3: Revenue of an SLA as a function of the violation time (Equation 2.1)

• ∆t is the time period that is requested to allocate the task.

• C is the client information. Let id be the client identifier and
−−→
CD a vector

that handles the description of the client, then C = {id,
−−→
CD}. The informa-

tion contained in
−−→
CD must be decided by the business administrator of the

provider and applied consequently in the policies. An example of a template

is
−−→
CD = {companyname, department, location, accessrights}. The provider

could calculate its relation to the client by comparing the client information
with its own information (company, department, etc...).

The revenue function Rev(vt) subtracts the penalties from the incomes, so it
indicates how profitable the allocation and execution of an SLA with a given set of
policies is. However, it does not indicate the provider’s net benefit because it does
not consider other costs, such as infrastructure maintenance. The revenue model
will be extended in Chapter 6 of this thesis to consider these additional costs.

2.5.2 On the usage of non-additive utility functions

The first issue that must be defined is the analytic model for representing the nego-
tiations that will be performed by the EERM. This model must take into account
the negotiated SLOs and other terms, such as Client classification or reservation
slots plus the sale price.

Traditional negotiation models for utility computing are based in the models
proposed by Raiffa [28] and Faratin [29], which calculate a global utility as the
weighted sum of a set of independent sub-utilities. This model is pretty easy to
handle because finding the maximum of the utility is finding the maximum of each
of the sub utilities. However, it is an additive model, which assumes that all the
factors are independent from the others, because each sub-utility only considers a
single variable term.

Let S be the SLA under negotiation, Equation 2.2 shows the nonadditive utility
function U used in this thesis from the Service Provider side.

U(S) =
m∑
i=1

oiui(S) (2.2)

Where m is the number of goals for the Provider, such as revenue maximisation,
reputation, performance maximisation, high occupation of resources, or satisfaction

34

of certain type of users. ui is the sub-utility function that defines how much will
be the objective i satisfied, and oi is a number between 0 and 1 that defines the
priority that the Provider assigns to the particular objective. It must be considered
that

∑m
i=1 oi = 1.

Although Equation 2.2 is similar to an additive function, actually it is not.
Instead of calculating each of the sub-utility functions as a function of a single
term of the SLA and finally add them up, Equation 2.2 calculates all the sub-
utilities as a function of the whole SLA (multiple terms are considered in each sub-
utility), because the different objectives are not independent from the others and,
for example, revenue maximisation can affect negatively the Client satisfaction. The
reason for this is that nonadditive utility functions are non linear.

Maximising nonlinear utility functions can be pretty complex, specially when
multiple variables exist. Choquet Integrals [30, 31] have been used for multicriteria
decision with nonadditive functions where some of their values are fuzzy. However,
they do not help to maximise the function, but only to choose the best alternative
from a set.

The framework used in this thesis uses discrete values of time and price. Then
U(S), which is theoretically continuum, is divided into a discrete, finite set of values
as a function of price and time.

Choosing the best price and time slot is choosing the pair of price and time
whose U(S) is greater to the U(S) values for all the other pairs.

The positive results of applying the negotiation model of this section have been
published as a Master Thesis [32] and an international conference paper [27].

2.6 Dynamic pricing

In a market, the providers mus t establish an adaptable pricing policy that varies
according to the offer/demand ratio [33]. When the supply of cloud resources exceeds
the demand, prices must be low. When the demand exceeds the offer, prices can
be high to maximise benefit. Our Revenue Maximisation policy is calculated as a
function of two factors: Price Utility and Aggressiveness factor. Before describing
the pricing policy, we must describe such factors.

Price utility: up(SLA). When the provider establishes a price, it must know the
range of prices where the agreement is possible. The reservation price of the
seller (RPs) is the minimum price that the seller can accept without losing
money. The reservation price of the buyer (RPb) is the maximum price that
the buyer can pay and still get benefit from the acquired good. An agreement
between buyer and seller is only possible when RPs ≤ Price ≤ RPb.

up(SLA) =
Price−RPs
RPb−RPs

(2.3)

Equation 2.3 defines the price utility. That means that the utility for the
provider is high (up(SLA) → 1) when the price tends to be RPb. However,
maximizing this utility function may not determine the price of a task: high
prices will enforce clients to look for cheaper providers in the market. By this

35

reason, considering only up(SLA) as pricing parameter would rarely lead to
economic profit, because high prices would entail low sales in most scenarios.
This issue motivated the introduction of a the following parameter: the ag-
gressiveness factor, which helps deciding the maximum price in function of the
market status.

The main issue of implementing up(SLA) is to know the reservation price of the
buyer, which only can be speculated from the market historical information.

Aggressiveness factor: a(∆t). It calculates the percentage of resources that the
provider has already reserved for a given time period ∆t. A high value for
a(∆t) enforces the provider to establish higher prices because it is an indicator
of a high demand ratio in the market. a(∆t) may be calculated according to
predictions based on historical data or other information, such as non-linear
equation systems or machine learning algorithms.

Let Rused(t) be a function that predicts the usage of the currently reserved
bottleneck resources over time (for example, CPU or disk); let Rreq(t) be a
constant function which represents the bottleneck resources requested by the
client in the negotiation process (as a result of the decomposition of the set of
QoS terms S); let Rj(t) be a constant function that represents the amount of
bottleneck resources of the physical resource j; Equation 2.4 shows how the
aggressiveness factor a(∆t) is calculated over a set of N physical machines.

a(∆t) =

∑N
j=1

∫ tf
ti
Rused(t) +Rreq(t) dt∑N
j=1

∫ tf
ti
Rj(t) dt

(2.4)

According to Equation 2.4, a(∆t) → 1 (its maximum value) when the sum
of used and requested resources are near to the maximum capacity of the
provider and a(∆t) → 0 (its minimum value) when the sum of used and
requested resources is low.

We will define urv(S) as a function of a(t) and up(S) to achieve the next goals:

• In offer excess scenario, when a(t) is low, Clients will choose Providers that
offer lower prices (up(S)→ 0) for the same SLA. So urv(S)→ 1 when up(S)→
0.

• In demand excess scenario, where a(t) is high, Clients will have to accept high
prices (up(S)→ 1), since there are few alternatives. So it is convenient for the
Provider to push up its prices to maximise its benefit.

First intuition says that the Law of Supply and Demand can be accomplished by
adjusting linearly the prices in function of the demand, as shown in the maximum
values (darkest color) of Figure 2.4(a). The equation that describes this behaviour is
urv(S) = sin

(
π
2

(up(S) + (1− a(t)))
)
. However, the experimentation results shown

that, even if a(t) is relatively high, the Clients have chances to choose cheaper
Providers, so maximising urv(S) would lead to have less revenue.

Alternatively, a(t) can be divided to decrease the utility when prices are too
high in high-demand market scenarios. The result is shown in Figure 2.4(b). This

36

Figure 2.4: Firt attempts for defining urv(S)

function is effective in normal Market status, but is not when the demand excess is
very high (a(t) ' 1), because it does not take the most of the negotiation when the
client has no alternatives.

First attempt (Figure 2.4(a)) maximises profit when a(t) is high but does not
when a(t) is low. Second attempt (Figure 2.4(b)) maximises profit when a(t) is low
but does not when a(t) is high. A third attempt combines the advantages of both,
powering a(t) to cur as shown in Equation 2.5. cur that describes the intensity of
the curve of the crest of Figure 2.5. This way the prices will be low in almost all the
scenarios but in excess of demand, when a(t) → 1 and the prices can be high. In
addition, up(S) is multiplied by an attractor called G that will make utilities lower
when combinations of (up(S), a(t)) are far from the crest of the function. That
will force even more providers to look for combinations (up(S), a(t)) near to the
maximum of the utility.

urv(S) = sin
(π

2
(G · up(S) + (1− a(t)cur))

)
(2.5)

Since the range of utilities in Equation 2.5 is [−1, 1], the whole equation is divided
by 2 and added 0.5 to normalize the range of utilities to [0 : 1]. The resulting formula
is the Equation 2.6.

urv(S) = 0.5 +
sin
(
π
2

(G · up(S) + (1− a(t)cur))
)

2
(2.6)

The constant values for G and cur have been tuned experimentally after several
tests in competing market simulations. The values that provided the best results
after the previous experiments are G = 2 and cur = 15, which are used in the
experiments performed in this thesis.

The colour map in Figure 2.5 helps to understand Equation 2.6. The dark zones
show the combinations of up(S) and a(t) that report higher values for urv.

Dynamic pricing was already introduced and evaluated in our previous work
[27, 32], which showed how providers that apply dynamic pricing have higher revenue
than providers that apply a static percentage over their reservation price (see Figure
2.6). In our previous experiments, the provider with lowest fixed prices (4%) get
the highest revenue in the offer excess scenario (only 10 clients for 5 providers),
the provider with highest fixed prices (16%) get the highest revenue in the demand
excess scenario (60 clients for only 5 providers), and the providers with intermediate

37

Figure 2.5: Utility histogram as a function of the price and the aggressiveness factor
for an SLA S

prices get the highest revenues in equilibrium scenarios. Figure 2.6 shows that the
provider that applies dynamic pricing beats all the other providers in all the scenarios
because of its capacity of adaptation.

To check the effects of competition between several dynamic-pricing providers,
the same experiment has been repeated with two dynamic-pricing providers. Fig-
ure 2.7 shows that the benefit of most fixed-pricing providers decreased noticeably
in all the scenarios. Figure 2.7 also shows that the distance between dynamic-
pricing providers (labelled as Dynamic1 and Dynamic2) and static-pricing providers
is higher. The stronger competition the higher need to be adaptable.

2.7 Simulation environment

The experiments of this thesis have been validated in simulated environments instead
of real test beds. The main reason is that each single experiment would require to
completely occupy a large data center during days or weeks to get data that is
statistically relevant enough.

For each chapter in this thesis, a simulator has been created to incorporate
the models and environments described in the research. This section describes the
methodology used to create the simulators, whose source codes are available on line
[34, 35, 36, 37].

The simulation design comprehends two levels: market and resource fabrics.

2.7.1 Market-level brokers simulation

In our thesis, a marketplace is a service that allows both clients and providers to
meet and negotiate SLAs. There are many mechanisms to implement a market, like
Peer-to-Peer systems or directories. Our simulated environment does not consider
the particularities of each implementation, and considers market as a directory of
providers and customers where, each time a client wants to buy cloud resources, the
following process is engaged:

1. The client sends an SLA template like the one described in Section 2.5.1, but

38

Figure 2.6: Comparison of revenue between providers with static pricing and dy-
namic pricing

Figure 2.7: Comparison of revenue between dynamic and fixed pricing when two
dynamic providers are in the market

39

excluding the revenue information. In each research topic of this thesis, the
clients could add some extra information to the SLA related to, for example,
risk or QoS level.

2. The market forwards the client request to the providers.

3. The provider checks whether it can fulfil the SLA and, in case it can, it cal-
culates the price and allocation that maximises its utility (according to the
model in Section 2.5.2). The provider returns the offer to the client. The
contents of the utility maximisation function would depend on the BLOs of
the provider (revenue, client classification, QoS and risk level, trust, etc.).

4. The client will choose the provider that fulfils its QoS requirements and max-
imises the utility with respect to its preferences: price, risk level, trust and
reputation, etc.

2.7.2 Resource fabrics simulation

To simulate the allocation and operation of tasks in a Cloud Provider, this thesis
considers the following entities:

SLA Enforcement continuously watches that the SLAs are being fulfilled. If an
SLA is not being fulfilled during a time slot, SLA Enforcement component
updates the violation time (see Equation 2.1 of Section 2.5.1) of an SLA to
consider it during the accounting process of the Cloud Provider.

Accounting updates the financial status of the provider when it finishes the execu-
tion of an SLA. It stores some statistical information such as profit or losses,
number of violations, number of operated SLAs, etc.

Virtual Machine, which takes a portion of the resources (memory, CPU, disk,
network...) of a physical host. At every moment, the simulator accounts the
load of its assigned resources. A physical machine can handle a given maximum
workload. When the VM has not enough resources to handle the workload (e.g.
too much requests during a web workload), the SLA enforcement component
is notified.

Physical node. A Cloud Provider owns many physical nodes. Each physical node
handles none or several Virtual Machines. When the sum of loads from all
the VMs is higher than the total workload the node can afford, many of the
VMs will violate their respective SLAs. The number and distribution of such
violations would depend on the policies the provider specifies to deal with SLA
violations. In addition, a physical node could temporarily fail due to hardware
failures. When a physical node fails, all the VMs that were running on it are
stopped and, in consequence, the SLA enforcement component handles the
violation of their respective SLAs. The distribution of node failures would
depend on the simulation, being uniformly random or concentrated during the
beginning and the end of the node life cycle (as we will show in Chapter 6).

40

Each of the aforementioned entities is simulated in parallel for each simulation
step. A simulation step comprehends a time slot that, depending on the required
granularity for each experiment, varies from 5 minutes to 1 hour. During this time
slot, the workloads and failures are simulated following a probabilistic distribution.
Each chapter will describe in detail the probabilistic distributions for the following
configurable parameters of the simulator:

Simulated time. A simulation can represent a time slot that comprehends from
a day to many years. For example, simulations from chapters 3 and 4 may
consider 1 or 2 weeks. This time slot is representative enough to check the
behaviour of the system during peak and off-peak hours, and the weekend.
Simulations in chapter 6 represent 3 years to measure the system during its
complete life cycle.

Simulation step granularity. Each simulation step represents a time frame (usu-
ally from 5 minutes to 1 hour) during which the simulator performs the steps
enumerated in section 2.7.1. Simulations that evaluate the complete system
require short steps, while simulations that calculate isolate economic models
may be configured with longer simulation steps.

Clients workload requirements. How many clients are accessing the market,
how many resources they require at each moment, the demand pattern (con-
stant or daily/weekly-variable), and how the resources are linked between
them. Each workload requirement is explained in its respective chapter.

Clients business behaviour in terms of their relation with the provider, their
required QoS, their trust and their reputation. Each behaviour is explained in
its respective chapter.

Parameters of the policies. Each chapter describes a set of policies that rely on
some parameters. For example:

• Providers must define the thresholds of the Equation 2.1, as previously
defined in Section 2.5.1.

• Providers may apply diverse overprices according to the QoS they promise
to the clients.

• Providers in Chapter 4 can tune their adaptive policies (number of genes,
memory, mutations) to do them more flexible or rigid.

• Clients in Chapter 5 must weight the importance of the different types
of resources for their applications.

• Clients and providers in Chapter 5 must weight their trust relations be-
tween them: how much they trust to another peer according to its own
experience, and how much they should trust according to what others
say about it.

Prediction error. Some policies of this thesis (e.g. overselling in Chapter 3) rely
on some predictions that must be made by the provider. Predictions have a
degree of inaccuracy that has a direct consequence in the business objectives.

41

Failure distribution. When the simulated period is long enough, hardware re-
sources may fail. Experiments in Chapters 5 and 6 define the distribution of
these failures (when do they occur, how much time they last).

There are no available traces from real commercial Cloud markets that would
allow us to realistically adjust the aforementioned parameters. We do not expect
to reproduce realistic scenarios, because Cloud markets are yet experimental and
we cannot define what is realistic. In the experiments of this thesis, the values are
set according to a main criterion: to provide results that are statistically relevant
and proportional to the variations of the inputs. Before the definitive parameters
are set, the simulations have been repeated many times to tune some parameters.
For example, the maximum load value for the Web workloads must be set to force
providers violating enough SLAs to get comparative information between policies.
In this case, it is not important to know the exact number of SLAs that a provider
violates when it applies a given policy (because it could vary in different market
scenarios), but to check whether applying a given policy will decrease the number
of violations, and the magnitude of the reduction (e.g. 1-10%, 10-50%, ...).

Some other values are set according to what we would expect from the economic
theory, and we validate the results of the simulation as a function of the proportions
of the output, checking whether they are related with the proportions of the inputs.
For example, Chapter 3 establishes that 17% of the clients are willing to ask for the
maximum QoS (and pay more for it), 50% of the clients prefer cheap services (with
average QoS) and the rest of clients choose intermediate values for price and QoS.
Our simulations do not expect to reflect real customer preferences, but to demon-
strate that our policies could differentiate the QoS preferences between minorities
of users from the preferences of common users.

The rest of this section summarizes the simulator implementations that are used
for the different research topics in this thesis.

• The EERM simulator [34] simulates the complete life cycle of a cloud market
operation: services discovery, negotiation of an SLA, deployment of tasks,
operation and enforcement of the SLAs and undeployment. It is the main
simulator of this thesis, and evaluated the research topics that are related
to Chapter 3: Policy-driven BLO Maximisation, Revenue Management, and
Client Classification. The simulator embeds the Drools Rule engine [38] and
allows providers to load sets of policies that are triggered under the following
situations: SLA Negotiation, SLA Allocation, and SLA Violation. The policies
specify the SLA negotiation and allocation strategies, and the reactive actions
that are triggered to minimize the impact of the SLA violations. Chapter 3
implements two sets of policies, according to its business objective: Revenue
Maximization and Client Classification.

• The Genetic Pricing simulator [35] from Chapter 4 also deals with the Policy-
driven BLO Maximisation research topic, but focuses in the negotiation of
SLAs. Like the rest of simulators in this thesis, it is based on the EERM sim-
ulator, simplifying the policy management components to implement policies
that focus only on concrete aspects of the SLA Management and Enforcement.
The Genetic simulator implements a genetic algorithm for pricing resources ac-
cording to historical market data.

42

• In addition to the common Cloud Market services from the previous simulators,
the Reputation-aware simulator [36] also simulates a P2P network, where users
can communicate between them to exchange reliability information about the
providers. In addition, it implements smarter models at the client side, to
allow them choosing the provider depending on its trust, in addition to the
pricing.

• The aforementioned simulators implemented a basic resource description model.
SLAs were composed as a set of individual VMs without any relation between
them. The Risk-aware simulator [37] implements a service composition mech-
anism to allow describing modern cloud applications that are composed by
linked VMs of heterogeneous nature. The description of the links also allows
providers to quantify how the risk and uncertainty is propagated in complex
Cloud applications and perform more accurate negotiations and allocations of
the SLAs.

43

44

Chapter 3

Policy-Driven BLO Maximisation

3.1 Introduction

The behaviour of a provider is determined by its BLOs, which are considered when
the SLA is negotiated and enforced. For a Cloud provider, the maximisation of
economic profit is the most common BLO. This objective can be achieved by opti-
mally adapting the price of Cloud services to the status of the market (as described
in Chapter 2, section 2.6) and by minimizing the economic impact caused by the
penalties derived from possible violations of the agreed SLAs. However, Revenue
Maximisation is not the only BLO that may be relevant for a provider.

Despite of the economic benefits of using computing as a utility, there are still
open security reasons to not submit the critical or confidential data to resources that
are located in third parties [39]. For example, a company that stores sensible data
about its clients may not be legally allowed to send this information to data centres
belonging to a third company. These companies require an in-house infrastructure.
Aiming for profitability, they may decide to hire out the spare resources of their data
centres to external users that do not have such security or confidentiality restric-
tions, because the price that external clients pay to use the resources contributes to
amortise the cost of the data centres. Thanks to virtualisation, a company could
provide VMs to external clients without putting its critical data on risk.

In such a scenario, a differentiation between internal and external users is ad-
visable. However, a binary classification of the users as internal/external is not
accurate enough in some situations. For example, headquarters of a big company
can classify the users of its data centres according to different levels: users from
the headquarters that own the resources are completely internal, users from other
companies are completely external, and users from other headquarters of the same
company have an intermediate range. Even multinationals could define more de-
grees of proximity for headquarters in the same country and headquarters in other
countries. Whilst completely external users pay a fee and completely internal users
use the resources for free, the average users would pay a reduced fee that encourages
to only use resources from external locations when strictly necessary.

Another example of intermediate users are those from trusted entities that de-
cide to share their computing resources for sharing risks and dealing with peaks of
workload without the need to overprovision resources. Examples of trusted entities
are different companies from the same business cluster [40].

45

Clients can be classified according to other criteria. Many service providers
classify their clients according to the QoS that they have purchased. For example,
Spotify [41] is an online music provider that classifies its clients according to three
categories (free, unlimited and premium) according to their monthly fee. The higher
the fee, the more services and QoS: unlimited streaming hours, highest quality of
sound, available downloads, etc. The provider must consider the purchased QoS
when allocating the resources.

The usage of the resources by external users can affect the QoS of internal users
if the SLAs do not reflect priorities between clients in terms of pricing or allocation
of resources. Client Classification is applied to keep high QoS to internal users or
users with high QoS requirements. Client Classification considers the information
about the users when giving them access to the resources and prioritises some SLAs
according to two criteria:

QoS that the users are willing to acquire: the higher the QoS the higher the
price.

Affinity between the client and the provider: clients from the same company as
the provider or from entities that have a privileged relation with the provider can
hire the services at better prices, better QoS, or any other privilege.

Revenue Maximisation and Client Classification BLOs is achieved by the figure
of an EERM between market and resource layers (as described in Section 2.4 of the
background chapter). Since the Resource Manager at the infrastructure layer does
not have knowledge about the business details, it is difficult to define accurate poli-
cies or objectives to be fulfilled by the resources. Similarly, if a broker negotiates the
sales of resources without detailed information about them, this would potentially
lead to waste or overload resources.

This chapter aims to validate Hypothesis H1 (as stated in the introduction of this
thesis), which deals with the problems raised in research questions Q1: can cloud
market brokers improve the accuracy of their negotiations in the Cloud Market in-
frastructure? and Q2: can cloud providers improve their business performance by
means of adequately managing the tasks within the resource fabrics?. This chapter
faces the problem of cloud resource management from both business and perfor-
mance point of views, which are agnostic from each other and often conflicting.

The contribution of this chapter is to provide an integral solution of several poli-
cies that work together for maximizing the achievement of the BLOs of a Cloud
provider, dealing with performance issues. We describe and evaluate a set of poli-
cies for maximizing the BLOs: Price Maximisation and Discrimination, Resource
Overselling, Selective SLA Violation, Dynamic Scaling of Resources, and Runtime
Migration of VMs. We demonstrate that they can be applied for maximizing two dif-
ferent BLOs: Revenue Maximisation and Client Classification. Since both markets
and the internal status of the providers change over time, we evaluate the introduced
policies in terms of relative results and tendencies (e.g. using a certain policy you
can generally increase the profit).

The experiments have been performed using the EERM simulator [34]; a fine-
grained, customisable Cloud market simulator that triggers several business policies
that are defined by users. Both the policies and the simulations are targeting the
infrastructure layer within Cloud Computing (Infrastructure as a Service, IaaS).
The validity of the policies is evaluated through simulations instead of real execu-

46

tions mainly because two reasons: the first is the difficulty to acquire a test bed
large enough to get representative data from the experiments; the second is that
this chapter does not evaluate the performance, but the business benefits of using
an EERM in Cloud Computing markets. These markets are experimental at this
moment, and there are no traces of real executions for their reproduction in the
experiments.

3.2 Business-Driven SLA Negotiation and Enforce-

ment

This chapter shows policies to autonomously maximise the achievement of the BLOs
of a Cloud provider. This section shows two sets of policies classified by their BLO:
Revenue Maximisation and Client Classification.

To facilitate the reading of this text, the names of the policies are abbreviated
according to the following notation PolicyNameBLOName. PolicyName is an abbre-
viation of the policy name. The abbreviations of all the policies are shown below,
enclosed in parentheses next to their names. BLOName is an abbreviation of the
Business-Level Objective that is pursued by the PolicyName. The actual abbrevia-
tions for the BLOs are: RM for Revenue Maximisation, Aff for SLA classification
according to the client affinity, and QoS for SLA classification according to the QoS.
As example, PrDscAff is the Price Discrimination policy that applies discount to
clients according to their affinity. We will refer as PolicyName∗ to a given policy
regardless of the BLOName.

Table 3.1 provides a quick reference to each symbol referred in Sections 3.2.1 and
3.2.2.

3.2.1 Policies for Revenue Maximisation

Revenue Maximisation is the main motivation of most Cloud Computing providers.
This goal can be achieved by a combination of maximizing the incomes got when
executing services, minimizing the penalties due to SLA violations, and minimizing
the costs of the infrastructure (e.g. energy consumption, amortisation of hardware,
etc.). In the policies explained in this chapter, we focus on maximizing the incomes
and minimizing the penalties.

A provider may try to maximise the revenue from two points of view:

SLA Negotiation. The EERM must help the market brokers to achieve the most
beneficial contracts for their BLOs. This chapter implements policies for Price
Maximisation by means of Dynamic Pricing and Overselling of Resources that
help to maximise the revenue in negotiation time.

SLA Enforcement. When the SLAs are agreed and the tasks are sent to the re-
sources, the EERM must manage the resources for pursuing the optimum
achievement of BLOs. Policies that are used in this chapter at execution time
are Selective SLA Violation and Cancellation, Dynamic Scaling of Resources
and Runtime Migration of tasks

47

Symbol Description
vt Violation time

Rev(vt) Revenue function
MP Maximum Penalty

MPT Maximum Penalty Threshold
MR Maximum Revenue

MRT Maximum Revenue Threshold
Ci Client i description
−→
S QoS terms of the purchased service

∆t Time slot of a task
up(SLA) Price utility for the provider

RPs Reservation Price of the seller
RPb Reservation Price of the buyer

a(∆t) Aggressiveness factor
Rused(t) Predicted usage of reserved resources
Rreq(t) Amount of resources requested by a client
Rj(t) Total of resources in resource j

Rused
j (t) Predicted usage of resources by other clients in resource j

δ Time during which a VM would be selectively violated
aff Client affinity

P (Ci) Priority of client i (affinity-based or QoS-based)
Φ Maximum % to (un)penalise clients according to P (Ci)

Table 3.1: Definition of symbols used in Sections 3.2.1 and 3.2.2

48

Price Maximisation (PrMaxRM)

PrMaxRM uses the model for dynamic pricing as explained in the background
chapter (Section 2.6). This chapter uses PrMaxRM as a background policy in the
providers that want to maximise their revenue, and for comparative purposes with
providers that apply client classification.

Resource Overselling (OvrsRM)

Clients tend to slightly overprovision the computing resources that they eventu-
ally use [42]. Although thanks to virtualisation the resources are elastic and the
overprovisioned proportion is low [43].

We propose to resell the computing capacity that has already been sold but the
clients are not using: when a client negotiates an SLA and there are no enough
resources to allocate it, the scoring function in Equation 3.1 is calculated over the
set j = {1 . . . N} of physical machines. The physical resource j with the highest
positive score is selected as candidate for executing the task and the PrMax policy
is triggered for establishing a price. If there are no physical resources whose score
is positive, the job is rejected.

scorej = 1−
∫ tf
ti
Rused
j (t) +Rreq(t) dt∫ tf
ti
Rj(t) dt

(3.1)

The terms of Equation 3.1 are described following:

• Rreq(t) is a constant function that represents the amount of bottleneck re-
sources requested in the SLA that is being negotiated.

• Rj(t) is a constant function that represents the total amount of bottleneck
resources that are available in the physical resource j.

• Let Rused
j (t) be a prediction of the total bottleneck resources used by the other

clients in the physical resource j during the requested period.

According to Equation 3.1, scorej → 0 (its minimum value) when the sum of
used and requested resources for a physical node are near to its maximum capacity
and scorej → 1 (its maximum value) when the sum of used and requested resources
is low for this physical node. The scoring function would allow to select the resources
that are more suitable to oversell in function of how much underutilised they are.

The prediction of resource usage for a given resource (Rused
j (t)) can be calculated

statistically or by Machine Learning algorithms (Linear Regression, M5P, REPTree
and/or Bagging) [44] from the monitoring information. In the experiments on this
chapter, we use the CPU usage from resource monitoring because it is the bottleneck
resource for the majority of services to be executed in the Cloud provider. Equation
3.1 is abstract enough to allow using any other type of resource, such as memory or
network bandwidth.

49

Selective Violation of SLAs (SLAV iolRM)

When the previous policies are applied, a Cloud provider could oversell too many
resources due to errors in workload estimation. In consequence, some SLAs would
be violated indiscriminately. For minimizing the economic impact of such SLA
violations, we propose to violate first the SLAs with lower penalties, or those that
report less revenue [15].

We propose to violate first the SLAs that will report lowest revenue if fulfilled,
or lowest penalties if violated. Their allocated VMs are paused temporarily (using
virtualisation facilities). For each SLAi in a set of M SLAs that are being executed
in the overloaded physical resource, the following formula is calculated:

NR(SLAi) =
i−1∑
j=0

Rev(vtj) +
M∑

j=i+1

Rev(vtj) +Rev(vti + δ) (3.2)

In Equation 3.2, δ is the time during which the SLAi will be violated. The SLA
whose NR(SLAi) value is the maximum will be violated during δ time.

As defined in Equation 2.1, each SLA has a grace period (MRT). If vt ≤MRT ,
the violation will not involve any penalty. As a consequence, the system will tend
to violate first the SLAs whose vt ≤MRT , or the SLAs whose economic penalty is
low. This will lead to the distribution of the selective violations across the SLAs in
grace period and keep a compromise between Revenue Maximisation and QoS.

Dynamic Scaling of Resources (DynScalRM)

DynScal uses the potential of elasticity in virtualisation: hardware resources are
transparently reallocated within VMs at runtime [45]: when an SLA cannot be
fulfilled, the EERM looks for VMs that are in the same physical machine and are
not using all their allocated resources; then the EERM transfers the assignation of
resources from the VMs with idle resources to the VM of the SLA that is not being
fulfilled.

Runtime Migration of Tasks (RtMigrRM)

Due to the heterogeneous nature of the Cloud, it is possible that the system becomes
unbalanced and some physical resources in the pool are underutilised while others
are overloaded. We propose Runtime Migration of Tasks to deal with this issue:
when the load of a physical resource is over a given threshold (e.g. 90% of its total
capacity), the system triggers the following rule:

50

m ← overloaded physical resource that triggers the rule;
while systemLoad(m) ≥ threshold do

n ← physical resource with the lowest load in the resources pool;
if m 6= n then

Choose a random VM from m that would fit on n;
Migrate the chosen VM from m to n;

else
Finish Rule;

end

end

Algorithm 1: RtMigrRM policy

Some VMs from the overloaded machine are randomly migrated to another ma-
chine with enough free space, if any. The process is stopped when the resource load
is under the threshold or when there are no physical machines whose load is under
the threshold.

Recent studies [46] reveal that the cost of migrating Web Services in Cloud
Computing is near zero thanks to virtualisation, because creating, booting, and
populating a virtual machine with data takes few seconds (negligible in tasks that
take from one to several hours). This policy could also be used for energy efficiency
policies, by means of workload consolidation [47, 48].

3.2.2 Policies for Client Classification

In addition to Revenue Maximisation, another BLO is the classification of clients
according to the priority that the provider assigns to them. This priority can be
defined by considering two different criteria:

Client Affinity: The affinity (aff ⊆ [0, 1]) measures how the client is related to
the provider. For example, aff = 1 for a completely internal user; aff = 0.25 ∼ 0.75
for a client from a company with privileged relation with the provider (e.g. in the
same business cluster); aff = 0 for a completely external client. The calculation of
the affinity can be different among different providers, depending on their business
goals. How affinity is calculated is not important for our research: the main topic
is how to discriminate clients as a function of their affinity.

Quality of Service: The same Cloud provider could host critical tasks and tasks
that can tolerate lower QoS. For example, e-commerce applications could need extra
QoS guarantees to avoid losing money on service unavailability. It is reasonable to
allow critical clients to buy extra QoS guarantees at higher prices, and keep cheap
prices (but fewer QoS guarantees) for non-critical tasks. The different ranges of
QoS are defined by establishing different values for MRT , MR, MPT and MP in
Rev(vt) (Equation 2.1). We define three ranges of QoS, in descending order: Gold,
Silver, and Bronze. The higher the QoS range, the higher MR and the lower MP ,
MRT and MPT (lower values of these three values imply higher penalties).

As in Revenue Maximisation scenarios, the application of the policies for Client
Classification can be performed from both SLA negotiation and SLA enforcement
points of view. Actually, the policies for Client Classification are similar to the
policies for Revenue Maximisation, but considering the client priority as a first
classification criteria and the maximisation of the revenue as a secondary objective.

51

Price Discrimination (PrDscAff)

The PrDscAff policy is built on top of the PrMaxRM policy: after calculating the
best resource allocation for maximizing the economic profit (see Section 3.2.1), the
calculated revenue is multiplied by (1−affinity). This allows users with some affin-
ity to receive a discount that is proportional to their affinity. This policy combines
Client Classification with Revenue Maximisation as a secondary BLO and always
considers affinity as the main priority. Multiplying price by (1− affinity) will lin-
early prioritise users (a user whose affinity is 1 will have the double of priority than
a user whose affinity is 0.5). However, other distributions such as (1 − affinity2)
could be considered as a function of the provider policies.

The PrDscQoS policy is not considered because it would not make sense: Gold
tasks must not be cheaper than Silver tasks, and Silver tasks must not be cheaper
than Bronze tasks.

Overselling of resources (OvrsAff and OvrsQoS)

OvrsAff and OvrsQoS are built on top of OvrsRM : the provider sells computing
capacity that has been already sold, assuming that not all the clients will use always
the 100% of their allocated resources. In this way, the provider can allocate more
resources than its actual capacity.

The difference with OvrsRM is the scoring function that determines if a physical
resource is suitable for allocating an oversold resource (see Equation 3.3). Recall that
the physical resource j with the highest positive score will be selected as candidate
for executing the task.

The calculation of the scoring function is updated so that the prediction of the
used resources in the scored physical node is artificially increased when the priority
of the client that negotiates the SLA is low and artificially decreased when the
priority is high. Let φ ⊂ [0, 1] be the maximum factor to penalise or unpenalise the
predicted resource usage as a function of the client priority P . The priority-corrected
prediction is defined as (1 + φ− 2φP)Rused

j (t).

scorej = 1−
∫ tf
ti

(1 + φ− 2φP)Rused
j (t) +Rreq(t) dt∫ tf

ti
Rj(t) dt

(3.3)

The motivation for Equation 3.3 is similar to the motivation for Equation 3.1, but
artificially increasing/decreasing Rused

j (t). This adjustment will motivate a higher
acceptance of clients to which the provider has high affinity, because physical re-
sources will appear emptier than they really are. As example, φ = 0.4 used in the
experiments will bias the prediction of a completely affine client to be 40% less than
the actual one, and 40% higher for those clients to which there is no affinity. This
way the admission rate of clients to which there is high affinity will be higher than
the rate for clients to which there is low affinity.

The objective of this work is not to find the best value of φ but to evaluate the
policy in terms of tendencies. Higher values of φ would decrease the revenue and
increase both the average affinity and the number of SLA violations. Lower values
of φ would have the opposite effect.

52

Selective Violation of SLAs (SLAV iolAff and SLAV iolQoS)

Analogously to SLAV iolRM , we propose to violate first the SLAs of clients with low
priority: to pause temporarily the tasks of the clients to which there is low priority
(using virtualisation facilities). For each SLAi in a set of M SLAs that are being
executed in the overloaded physical resource, the following formula is calculated:

NR(SLAi) =
i−1∑
j=0

Rev(vtj) ∗ P (Cj) +
M∑

j=i+1

Rev(vtj) ∗ P (Cj) +Rev(vti + δ) ∗ P (Ci)

(3.4)
In Equation 3.4, P (Ci) is the value of the affinity or the QoS of the client Ci and

δ is the time during which the SLAi will be violated. The SLA whose NR(SLAi)
value is the maximum will be violated during δ time.

Equation 3.4 considers both revenue and client priority for choosing the SLA to
be violated, because it would not be a good idea, for example, to cancel an SLA
that reports a big revenue only because its associated client has 2% less priority
than clients that own other SLAs with very low revenue or penalty.

Dynamic Scaling of Resources (DynScalAff and DynScalQoS)

This policy extends DynScalRM by adding the client priority to artificially bias
the monitoring data of the resources. The resources needed for enforcing SLAs
from low-priority clients are artificially decreased by a percentage that is linearly
proportional to their priority. The resources needed for enforcing SLAs from high-
priority clients are artificially increased by a percentage that is linearly proportional
to their priority. Consequently, the system will act as if low-priority VMs tend to
have free resources to transfer to high-priority VMs.

Runtime Migration of Tasks (RtMigrAff and RtMigrQoS)

If RtMigrRM deals with the fact that the workload is unbalanced across the re-
source pool, RtMigrAff and RtMigrQoS policies also deal with the fact that client
priorities are unbalanced across the resource pool: if a physical machine is execut-
ing many tasks to which there is high priority and SLAV iol policy is triggered,
a high priority task could be violated even if there are low priority tasks in other
physical resources. Balancing the client priority across machines will minimize the
aforementioned situations.

Analogously to DynScalAff and DynScalQoS, the RtMigrAff and RtMigrQoS

policies bias linearly the monitoring data from RtMigrRM (see algorithm 1) for pri-
oritizing the migration of high-priority VMs to physical resources where the average
priority of VMs is low.

3.3 Evaluation

This section describes the simulation environment as well as the results of the sim-
ulations for each policy introduced in the previous section.

53

3.3.1 Simulation environment

This section describes the experimental environment and its configuration values.
We have used the EERM Simulator [34] to execute and evaluate the policies that
are introduced in this chapter. The EERM Simulator is a fine-grained Cloud mar-
ket simulator that simulates the complete cycle of our Cloud SLA negotiation and
enforcement model: service discovery, SLA negotiation between provider and client,
execution of Web Services or batch jobs and monitoring of the resources. It supports
many features of Cloud Computing, such as elasticity of resources or migration of
VMs. The EERM Simulator integrates the Drools [38] Rule Engine to allow con-
figuring the SLA management policies depending on the BLOs (e.g. the policies
described in this chapter). We have used a simulated environment because it allows
generating more data with limited resources in short time. This will allow to eval-
uate more precisely the models. For more details about the simulation technology,
please refer background Section 2.7.

The simulated data centres are sized to represent a small-medium company that
wants to externalise part of its resources for quicker amortizing the infrastructure
costs, as stated in the Introduction. However, our research also focuses on large
data centres that rent their space to companies. The policies are scalable for both
types of providers, because they are applied at the level of each individual hardware
node, without data or message dependencies between nodes.

The constant values and the parameters of the simulation described are arbitrary
because there are no real market traces to extract data from. Different real market
scenarios could require different values, but the contribution of this research is to
show how Client Classification reports benefit qualitatively, not quantitatively.
In other words, this chapter shows how a given policy can increase the revenue or
improve the QoS to the preferential clients; this chapter does not intend to show
whether the numeric values are optimal, because they would vary depending on the
real market status. In the next chapter, the provider will automatically adjust its
parameters for self-adapting to changing market environments. The observed trends
are more important than specific values. The rest of this subsection explains the
chosen values for the aforementioned values, which are also summarised in Table
3.2.

In the market, clients try to buy resources to host their Web Services. They send

requests that contain {QoS,C,
−→
S ,∆t}, in whichQoS = {Gold, Silver, Bronze}. For

the same task in equal time and load conditions, the maximum price that the client
is willing to pay for Gold QoS is 50% higher than for Silver QoS and 80% higher
than for Bronze QoS.

The Web workload is described in the background section of this thesis (Section
2.2), and varies as a function of the hour of the day and the day of the week.
However, the proportion of QoS and Affinity of the clients does not vary in time.

Every provider belongs to a different organisation, and has an affinity higher
than 0 for 25% of the clients in the market, and equal to 0 for 75% of clients. The
affinity of the clients of the same organisation than the provider ranges from 0 (non-
inclusive) to 1 (inclusive) with an uniform distribution. Summarizing, the average
affinity of all the clients is ∼ 0.21 for every provider. Each client asks for Gold,
Silver or Bronze QoS, independently of their organisation. 1/6 of the clients ask for
Gold QoS, 2/6 ask for Silver QoS, and 3/6 ask for Bronze QoS.

54

Parameter Value(s)

Φ 0.4
QoS ranges {Gold, Silver, Bronze}
Maximum Price for Gold 1.5 * Maximum Price for Silver
Maximum Price for Silver 1.2 * Maximum Price for Bronze
Clients asking for Gold QoS 16.7%
Clients asking for Silver QoS 33.3%
Clients asking for Bronze QoS 50%
Distribution of the affinity be-
tween provider and clients

>0 for 25% of clients, =0 for the
rest

Average affinity between provider
and clients

0.21

Table 3.2: Values of the parameters for the simulations

When the provider checks the request from the client, it applies Machine Learning
techniques [44] to predict future workloads and verify whether the offered job can
be executed correctly. A bad prediction could entail a violation of the SLA. The
providers that accept the request return a revenue function Rev(vt), which specifies
the prices and penalties to pay for the execution of the service. Finally, the client
chooses the provider with the lowest price or best time schedule for its interests, and
sends back a confirmation.

The rest of this section demonstrates the validity of the policies introduced in
Section 3.2. In each subsection, policies are incrementally added to the EERM rules
repository in the same order as they were explained in Section 3.2. For demon-
strating its validity, they are simulated in a scenario in which four different Cloud
providers sell their services in a market during a week. Each provider has its own
characteristics:

1. A provider that executes all the policies simulated so far. It prioritises users
to which the provider has high affinity.

2. Same as provider 1, but prioritizing tasks with high QoS.

3. Same as providers 1 and 2, but excluding the policy that is being introduced
in the corresponding subsection. It is used for comparison purposes.

4. A provider that executes all the policies simulated so far, with client affinity as
the objective. But the policy that is being introduced is applied with Revenue
Maximisation. This formula is used instead of applying all the policies based
on Revenue Maximisation for showing the real benefits of the introduced RM
policy when compared with Aff policies.

It is important to evaluate how the providers behave and how effective the policies
are in different scenarios. For example, if there are many providers and few clients,
the prices and the load of the system will be low; if there are too many clients and
the providers cannot host all of them, prices and the system workload will be high.
To evaluate the policies in all the scenarios, all the experiments are repeated with
different offer/demand ratios.

55

Figure 3.1: Comparison of revenue when using PrMaxRM and PrDscAff policies

3.3.2 Experimental results

Price Maximisation and Discrimination (PrMaxRM and PrDscAff)

Figure 3.1 compares the revenue of the providers that are competing in the market.
Every provider has different policies for pricing: NoPrDsc policy (which implements
a fixed-pricing policy), PrMaxRM , and PrDscAff . The PrDscQoS policy is not
considered because does not make sense: Gold tasks must not be cheaper than
Silver tasks, and Silver tasks must not be cheaper than Bronze tasks.

The x axis shows the number of clients in each experiment, which varies for
showing the performance of the policies in different offer/demand ratios. The y axis
represents the revenue of the different providers. Each column group represents the
obtained results of the providers in the experiments.

Figure 3.1 shows that, as expected, revenue is noticeably increased for the
provider that applies PrMaxRM , compared to the provider that applies NoPrDsc.
In the case of PrDscAff -provider, the revenue is noticeably decreased if compared
with fixed-pricing and revenue maximisation providers. It is demonstrated that the
increment of the average affinity of the clients of PrDscAff penalises the revenue.
The need for compensating the impact in revenue of PrDscAff justifies the appli-
cation of Ovrs∗ policies.

Figure 3.2 is structured similarly to 3.1, but its y axis shows the average affinity
of the clients that used each resource. The average affinity is the addition of the
affinities of all clients divided by the number of clients. The figure shows that the
provider that implements PrDscAff increases the average affinity of its clients up
to 50%, compared to the other providers. The average affinity of clients in providers
without PrDscAff is almost the same as the average affinity of all the clients in the
market (∼ 0.21).

56

Figure 3.2: Comparison of average affinity when using PrMaxRM and PrDscAff

policies

Resource Overselling (Ovrs∗)

Figures 3.3 and 3.4 have a similar structure to Figures 3.1 and 3.2: they show both
the revenue and the average affinity according to the policy combination in the
provider.

Figure 3.3 compares the revenue of the four providers described in Section 3.3.1:
the provider labeled as NoOvrs applies PrDscAff but does not apply any over-
selling policy; the other providers apply their respectives dynamic pricing policies,
as well as overselling policies based on Revenue Maximisation (OvrsRM), affinity
discrimination (OvrsAff), and QoS range (OvrsQoS), respectively. Figure 3.3 shows
that all the overselling policies have a positive impact on earnings. The provider
labeled as NoOvrs is the lower bound and the provider labeled as OvrsRM is the
upper bound. OvrsAff and OvrsQoS stay in the middle of both: the clients are
classified without renouncing the revenue completely. The revenue with OvrsAff is
lower than the revenue with OvrsQoS because OvrsQoS prioritises Gold and Silver
contracts, which report more revenue than Bronze ones.

To compare the usefulness of overselling based on affinity discrimination (OvrsAff),
Figure 3.4 also includes the results of a provider that performs PrDscAff , but its
overselling policy is driven by revenue instead of affinity (labeled as OvrsRM). As
the intention of OvrsQoS is not to attract clients to which the provider has high
affinity, this policy is not included in the figure. Figure 3.4 shows that not consid-
ering the client affinity in the overselling policy decreases the average affinity of the
clients. It is not caused by any type of penalisation, but it is a statistical fact: more
clients enter the system, regardless their affinity. OvrsAff maintains similar affinity
levels as those of NoOvrs but increasing the revenue of the provider, as in Figure
3.3.

57

0

50

100

150

200

250

300

8 16 24 32 40 48 56 64

R
ev

en
ue

clients

No Ovrs
OvrsRM

OvrsAff

OvrsQoS

Figure 3.3: Comparison of Revenue when using different Ovrs policies

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

8 16 24 32 40 48 56 64

A
ve

ra
ge

 A
ffi

ni
ty

clients

No Ovrs
OvrsRM

OvrsAff

Figure 3.4: Comparison of Average affinity when using different Ovrs policies

58

0

10

20

30

40

50

60

8 16 24 32 40 48 56 64

V

io
la

tio
ns

clients

No Ovrs
OvrsRM

OvrsAff

OvrsQoS

Figure 3.5: Number of Violations when using different Ovrs policies

0

0.2

0.4

0.6

0.8

1

8 16 24 32 40 48 56 64

A
ve

ra
ge

 a
ffi

ni
ty

 o
f v

io
la

tio
ns

clients

OvrsRM OvrsAff

Figure 3.6: Affinity of the violations when using different Ovrs policies

59

Figure 3.7: Proportion of violations by QoS range when using OvrsQoS

The drawback of overselling is that it considerably increases the number of SLA
violations (Figure 3.5). There are two reasons: the associated error to the predic-
tor component, and the permissiveness in terms of workload with clients to which
the provider has high affinity. The latter makes the provider to violate a highest
proportion of SLAs of high-affinity clients (Figure 3.6). The provider that applies
OvrsQoS reports the highest number of violations because Gold and Silver SLAs
have stricter requirements, which are more difficult to fulfil. Despite the increase in
the number of violations, the proportion of violated SLAs over the total of allocated
SLAs remains below 2% in the worst case.

Figure 3.7 is a stacked chart that shows the percentage of each QoS range from
the total of violations for the OvrsQoS provider in several market simulations with
different number of clients. It shows that the higher the QoS rank, the higher the
percentage of violated SLAs. More violations of high-QoS SLAs do not mean that the
QoS for Gold SLAs is lower than the QoS for Silver SLAs. It means that achieving
the QoS requirements of Gold SLAs is difficult because the QoS requirements are
high.

The drawbacks of Ovrs∗ can be minimised by applying the rest of policies for
SLA enforcement at runtime: SLAV iol∗, DynScal∗ and RtMigr∗.

Selective Violation of SLAs (SLAV iol∗)

The experiments performed in this section show only the results of simulations from
32 to 64 clients, because the load of the system starts to be high from 32 clients,
and the number of violations will be high enough to be representative.

The results of the experiments support the validity of all the SLAV iol∗ policies.
Figure 3.8 shows that the provider that applies SLAV iolRM increases the revenue
up to 90% more than the other providers.

60

Figure 3.8: Revenue for SLAV iol∗

0

0.2

0.4

0.6

0.8

1

32 40 48 56 64

A
ve

ra
ge

 a
ffi

ni
ty

 o
f v

io
la

tio
ns

clients

No SLAViol
SLAViolAff

Figure 3.9: Average affinity of violations for SLAV iol∗

61

Figure 3.10: % of violations by QoS range with SLAV iolQoS

Figure 3.9 compares the average affinity of the SLA violations of two providers.
The average affinity here is the addition of the affinities of all the violated SLAs
divided by the number of SLA violations. Both apply PrDscAff and OvrsAff , but
one provider applies SLAV iolAff and the other does not. The figure shows that the
average affinity of violations of the provider that applies SLAV iolAff is ∼30-50%
less compared to the provider that does not apply it, because SLAV iolAff violates
SLAs from clients to which there is low affinity.

The results of prioritizing by QoS range are shown in Figure 3.10: the proportion
of high-QoS SLAs that are violated is considerably reduced with SLAV iolQoS, when
compared with only applying OvrsQoS (Figure 3.7).

A special case of SLAV iol is the Selective Cancellation of SLAs (SLACanc):
instead of pausing the lowest-priority VMs, SLACanc policy cancels them com-
pletely. Figures 3.11 and 3.12 show the results of an experiment where SLACanc
is applied: both the average affinity of the violations and the percentage of vio-
lations of high-QoS SLAs decreases noticeably in providers that respectively apply
SLACancAff and SLACancQoS. However, SLACanc must be applied with extreme
caution because it increases enormously the number of violations, specially to clients
with low affinity (up to 2000% in the experiments). Applying SLACanc would lead
to decreasing the reputation of the provider [49]. SLACanc must be only applied in
special cases, such as reorganizing tasks after a partial failure of the system, similar
to the Amazon EC2 outage in April 2011 [50]. Chapter 5 deals with the mid-term
impact of SLAV iol∗ and SLACanc∗ in the reputation of the provider.

Dynamic Scaling of Resources (DynScal∗)

Figure 3.13 shows that the provider that applies DynScalRM increases its revenue
by ∼30-100% more than providers that do not apply this policy. Although Revenue

62

0

0.1

0.2

0.3

0.4

0.5

0.6

32 40 48 56 64

A
ve

ra
ge

 a
ffi

ni
ty

 o
f v

io
la

tio
ns

clients

No SLACanc
SLACancAff

Figure 3.11: Average affinity of violations with SLACancAff

Figure 3.12: Percentage of violations by QoS range with SLACancQoS

63

Figure 3.13: Revenue for DynScal∗

0

0.1

0.2

0.3

0.4

0.5

0.6

32 40 48 56 64

A
ve

ra
ge

 V
io

la
tio

ns
 A

ffi
n

ity

clients

No DynScal DynScalAff

Figure 3.14: Average affinity of violations for DynScal∗

64

Figure 3.15: % of violations by QoS range with DynScalQoS

Maximisation is not the main BLO of DynScalQoS, the revenue of that provider is
also noticeably increased, because the number of SLA violations for Gold SLAs is
reduced and, in consequence, the provider must pay less penalties.

Figure 3.14 shows that DynScalAff reduces the average affinity of the violations
especially in scenarios in which the system load is not high. The reason is that
there is not much leeway for finding free resources in high-load scenarios, even when
the monitoring results are deviated to enforce Client Classification. Figure 3.15, if
compared with Figure 3.10, shows that the number of Gold SLAs that are violated
is reduced by 50% when applying DynScalQoS.

Runtime Migration of Tasks (RtMigr∗)

Figure 3.16 shows that providers that apply RtMigrRM and RtMigrQoS increase
their revenue compared to providers that do not apply them. The gain is proportion-
ally similar to previous policies because the percentage of tasks with high revenue
and penalties gets more balanced in all the physical resources.

RtMigr policy combines well with SLAV iol. Even if the migration of a task
could simply transfer the violation to the target machine, the key fact is that RtMigr
diversifies the priorities of the tasks in every physical machine. In consequence, it
is easy to find SLAs with low revenue in every overloaded machine. Otherwise,
if RtMigr was not applied there would be physical machines that only execute
high-revenue tasks and the EERM would violate one of them even if there were low-
revenue SLAs in the other resources. The same principle can be applied to client
affinity and QoS.

The effects of RtMigr vary when applying RtMigrAff or RtMigrQoS. The av-
erage affinity of the violations is only reduced about 3-5% in average in all the
scenarios (so the figure that shows it has not been considered relevant to be in-

65

Figure 3.16: Revenue when triggering different RtMigr policies

cluded). The more policies already implemented in the provider the less percentage
of improvement from new policies.

Figure 3.17 shows the notable effects of live migration when prioritizing high-
QoS tasks: the violations of Gold tasks are nearly non-existent, and Silver violations
are reduced. Figure 3.17 also shows that the more clients, the less effects of runtime
migration. The reason is that migrated tasks would be also violated in the target
machines because the high load of the resources.

The specific value for the threshold over which RtMigr is triggered (90% in the
experiments) is not important in this work, because we want to show that applying
RtMigr decreases the violations of high-priority SLAs. Finding the optimal value
for this threshold autonomously is part of our future work.

Another advantage of RtMigr is the reduction of the number of violations. Fig-
ure 3.18 shows that the violations are reduced almost linearly with the number of
clients when using RtMigrAff . That does not mean that the total of violations
is lower with 64 clients than with 32 clients, because although the percentage of
reduction is high, the total number of violations is also higher.

3.4 Conclusions

This chapter has introduced a set of policies that can be used for maximizing the
achievement rate of the BLOs of a Cloud provider. Two BLOs have been considered:
Revenue Maximization and Client Classification. Two facets can be used to classify
the clients: client affinity and QoS.

First, we introduced a set of policies for Revenue Maximisation: Price Maximi-
sation and Resource Overselling, which are triggered when the SLA is negotiated;
Selective Violation of SLAs, Dynamic Scaling of Resources and Runtime Migration

66

Figure 3.17: % of violations by QoS range with RtMigrQoS

10

15

20

25

30

35

40

45

50

55

60

32 40 48 56 64

%
 o

f r
ed

uc
tio

n
of

 S
LA

 v
io

la
tio

ns

clients

RtMigrAff

RtMigrQoS

Figure 3.18: % of reduction of violations with RtMigr

67

of SLAs, which are triggered when the VMs are running and the SLAs are enforced.
The set of policies for Client Classification is built by modifying the Revenue Max-
imisation policies for considering the client priority as a main objective; Revenue
Maximisation is kept as a secondary objective.

The experimental results exposed in this chapter strengthen the arguments that
support the first hypothesis of this thesis: Both resources and market layers can
collaborate to maximise their objectives by exchanging information during their
operation. Resource-level information helps improving the negotiations. Brokers
can adjust prices to the current status of the market and increasing the utilisation
rate of the resources to an envisioned future status. Business-level information is
successfully used to manage the resources for minimizing the economical impact of
adverse situations such as estimation at resource allocation or hardware failures.

Revenue Maximisation is suitable for most Cloud providers, because this is a
common objective for ensuring the sustainability of businesses. Classification by
QoS is suitable for a pure Cloud provider whose business is only based on selling its
resources (it does not use them for its internal applications) and needs to provide
different levels of QoS to gain maximum range of potential users, because it targets
three types of clients: clients that need high QoS and are willing to pay high prices
for that (because they may suffer economic losses), clients that do not have such QoS
constraints and prefer to get cheaper resources with an acceptable rate of availability
(for example, some Web pages for the general public), and an intermediate type of
client (medium/high QoS, medium/cheap price). Classification by affinity is more
suitable for organisations that host their own applications but want to sell part of
their spare resources to faster amortise the cost of the infrastructure.

Our model to discriminate as a function of the affinity or the QoS covers the
scenarios where intertemporal price discrimination [51] would be inefficient from a
business perspective. Intertemporal price discrimination would prioritise first the
clients to which there is high affinity or QoS and would not provide service to low-
priority clients until most of the high-priority clients were satisfied. Our priority
model intends to provide service to both, because of the deadline requirements of
their workloads. A similar approach to intertemporal price discrimination will be
presented in Chapter 6, where the resources are assigned to the clients as a match
of the priority of the clients and the age of the resources.

The results of our experiments are concluding: the combined application of
PrMaxRM and OvrsRM during negotiation increases revenue up to 200% in most
of our experimental scenarios. The rest of revenue maximisation policies that are
applied at runtime reduce the drawbacks of OvrsRM : the number of SLA violations
get a reduction on the range 10%-50% in average scenarios; the economic penalties
get a reduction around the 90%. Figure 3.19 summarizes the improvement of each
policy with respect to the set of policies that were introduced before it.

In the evaluation of client classification policies, the application of policies that
consider affinity during negotiation time increased the average affinity of clients
that use the system from ∼ 0.21 to 0.40 ∼ 0.45, as summarized in Figure 3.20.
The application of policies during the enforcement of the SLAs reduced the average
affinity of users whose SLAs are violated up to the 50%.

In terms of QoS level, the application of SLA Enforcement policies as a whole
set helps differentiating the SLAs also in terms of violations. Almost no Gold SLAs

68

1,37

2,30

1,66 1,71

2,04

0,00

1,83

0,97

1,41

1,63

0,90

1,43

0,91 0,95
0,96

0,00

0,50

1,00

1,50

2,00

2,50

PrMax/PrDsc Ovrs SLAViol DynScal RtMigr
RM QoS Aff

Figure 3.19: Summary: Revenue improvement of each policy with respect to the
previously introduced policies

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Ovrs SLAViol DynScal RtMigr

Figure 3.20: Summary: Average affinity of SLA violations for each policy

69

where violated, and the proportion of violations of Bronze SLAs is higher than the
violation of Silver SLAs in most scenarios.

It is important to consider the introduced policies as a whole set. A Cloud
provider should not consider applying only a subset of them because some policies
have many drawbacks when triggered individually: for example, PrDscAff reduces
revenue and Ovrs∗ increases the violations of SLAs. Applying the complete set of
rules allows maximizing the benefits while minimizing the drawbacks.

Selective violation of SLAs reports an immediate improvement in the fulfilment
of the BLOs. However, in a real market that could have a negative impact in the
revenue of the provider because the trust and reputation to the provider would drop.
Chapter 5 will integrate the behaviour of the provider within a trust and reputation
framework, study the impact of SLA violations in the reputation of the provider
and propose policies to minimise such impact.

The negotiation policies that are introduced in this chapter consider tasks as a
set of individual VMs. The risk of failure does not consider whether a failure in
a cloud resource (e.g. a storage device) causes or not a failure in another cloud
resource (e.g. a VM) that is being used by the same application. Chapter 6 will
refine the risk model to include the propagation of failures, and using it to perform
accurate classification of clients by their QoS level: to model each level of risk, to
distribute tasks among resources and pricing accordingly.

The policies rely on some constant values that could not lead to the optimal
achievement of the BLOs. Our aim is to show how the policies can maximise the
achievement of the BLOs, because such values may vary depending on each market
implementation and their changing status. However, this issue raises the research
question that will be addressed in the next chapter: How can providers automatically
adapt their behaviour to changing environments such as markets?

The research performed in this work area has resulted in the following publi-
cations, including two international conferences, one international workshop and a
journal article:

• M. Maćıas, J.O. Fitó, and J. Guitart, “Rule-based SLA Management for Rev-
enue Maximisation in Cloud Computing Markets” in Proceedings of the 6th
IEEE/IFIP International Conference on Network and Service Management
(CNSM’10) (Short Paper), pp. 354-357. Niagara Falls, Canada, October 25-
29, 2010. ISBN: 978-1-4244-8908-4. doi:10.1109/CNSM.2010.5691226

• M. Maćıas and J. Guitart, “Client Classification Policies for SLA Negotia-
tion and Allocation in Shared Cloud Datacenters” in Proceedings of the 8th
International Workshop on Economics of Grids, Clouds, Systems, and Ser-
vices (GECON’11). Lecture Notes on Computer Science (LNCS), Vol. 7150,
pp. 90-104. Paphos, Cyprus, December 5, 2011. ISBN: 978-3-642-28674-
2 (print version), 978-3-642-28675-9 (electronic version), ISSN: 0302-9743.
doi:10.1007/978-3-642-28675-9 7

• M. Maćıas and J. Guitart, “Client Classification Policies for SLA Enforce-
ment in Shared Cloud Datacenters” in Proceedings of the 12th IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing (CCGrid’12),
pp. 156-163. Ottawa, Canada, May 13-16, 2012. ISBN: 978-0-7695-4691-9.
doi:10.1109/CCGrid.2012.15

70

• M. Maćıas and J. Guitart, “SLA Negotiation and Enforcement Policies for
Revenue Maximization and Client Classification in Cloud Providers” Arti-
cle accepted in the Future Generation Computer Systems journal (Elsevier),
GECON 2011 special issue (pending of publication)

71

72

Chapter 4

Adaptive Pricing Policies

4.1 Introduction

Previous chapter demonstrated that considering economic decisions during the SLA
allocation and enforcement processes improves the achievement of the BLOs in a
provider. However, the policies rely on constant values that are suitable for an
experimental environment but may vary according to the concrete market status.
These constant values assume that markets are stable and always behave rationally,
according to some pre-defined models.

These assumptions can lead providers to underperform economically in some
special scenarios, such as very low or very high offer/demand ratios. The proposed
model considers some parameters such as demand, workload of the resources, or
predictions about future load. However, there are some other parameters that can
influence the prices, which can be difficult or impossible to include in the models
because of their random nature.

This chapter aims to validate Hypothesis H2, which deals with the problems
raised in research question Q4: How can providers automatically adapt their be-
haviour to changing environments such as markets?

To deal with this uncertainty problem, this chapter proposes Genetic Algo-
rithms [52] as a model for analysing financial markets [53]. The basic idea of Genetic
Algorithms is to have an extensive population of generic pricing models (chromo-
somes) whose parameters are stored as genes. At the initial moment, the genes are
random, and some chromosomes are better than others (that is, their pricing models
provide prices that are more beneficial for providers). The best chromosomes are
selected in base to their pricing accuracy, and they are reproduced and mutated
by simulating the natural evolution process. After some iterations of this process,
the population of chromosomes will tend to provide prices that maximise the ben-
efit of the provider. As in nature, if the environment changes, the population will
self-evolve to become well adapted.

Instead of classical Machine Learning techniques, we have chosen Genetic Algo-
rithms because they have demonstrated to be more robust, since they do not break
easily in the presence of reasonable noise. Also, they may offer significant benefits
over typical optimization techniques in large, multi-modal state spaces [53].

This research is a step forward in the definition of pricing strategies of Cloud
Providers. Genetic Algorithms are used because they are simple to implement and

73

dynamic enough to modify themselves (in comparison to the models from the previ-
ous chapter, whose pricing results were dynamic, but the models were static). Such
dynamic behaviour will allow the model to self-adapt to changes in the market, and
keep providers offering beneficial prices. This chapter proposes a new Genetic Pric-
ing Model that considers the relative simplicity (compared to real financial markets)
of Cloud Computing Markets and evaluates it experimentally and compares it with
the pricing model from Chapter 3.

4.2 Applying genetic models to pricing

Finding a good pricing model through Genetic Algorithms implies solving the fol-
lowing three issues:

Define a chromosome. In this thesis, the chromosome is a naive function,
whose parameters are some relevant data that could influence in the price, as de-
scribed in Section 4.3.1. The relations and weights of these parameters are deter-
mined by the genes of the chromosome, which are at least partially different from
the genes of other chromosomes. This function is called pricing function, because
its evaluation corresponds to the price that a provider will ask for the sale of a Cloud
service. The result of the pricing function is named output of the chromosome.

Evaluating the chromosomes. The chromosomes in a population must be
evaluated. That means that their output must be compared to a reference value
that is given by a teaching entity or by the actual value when trying to do predictions.
In this work, the reference value is the Exercise Price: the price that a client finally
pays for acquiring a Cloud resource.

Selection and reproduction of chromosomes. The chromosomes with low-
est results in the evaluation are discarded from the population. Pairs of the best-
adapted chromosomes are selected for reproduction by mixing their genomes, so the
population is replenished.

The rest of this section describes how the aforementioned issues have been faced
up.

4.2.1 Definition of chromosomes

Let
−→
P = {p1, ...pn} be a set of n parameters that contain some relevant information

that could influence in the price of a requested task (for example, the amount of
demand, the load of the system, the hour of day, the amount of resources, etc.). It
must be emphasised that some of these parameters could influence, but actually do
not necessarily do. We include all the parameters in our model because, in a complex
and changing environment we do not know neither which have a real influence nor
the weight of such influence. Section 4.3.1 describes deeply the parameters used in
the experiments of this chapter.

Let
−→
G = {g1, ...gm} be a set of m = 2n2 + 2n + 1 genes that vary across differ-

ent chromosomes and indicate the weights and mathematical relations between the
parameters. Equation 4.1 shows the pricing function expressed in each chromosome

by
−→
P and

−→
G .

74

Pricing(
−→
P ,
−→
G) =

∑n
i=0 gi

∏n
j=0 p

gi+j+1

j∑n2+n
i=n2 gi+n

∏n
j=0 p

gi+j+1

j

+ gm (4.1)

Assuming that the optimal pricing function is unknown because it can change
as the market evolves, Equation 4.1 describes a simple and generic function that is
able to evolve to specific approximation functions by assigning a proper value set

for
−→
G . For example, Equation 4.1 can be transformed into a linear function such

as p0 + 3p2 + 6, a division of functions such as p12+0.5p4
p01/3+3p2−1 + 0.3, or other types of

nonlinear functions such as (p0p1)
4 + 2p2

6 + 4p2p3 + 3.2

4.2.2 Evaluation of chromosomes

The reference value (RefV al) is the lowest price that the buyer has chosen to pay in
the last market competition, after the sale is performed. That evaluation requires of
the existence of a Market Information System [54] that makes visible some pricing
information to the market participants.

The scoring of a chromosome at time t is |Pricingt(
−→
P ,
−→
G) − RefV alt|. The

closest to 0 is the score the best price has proposed the chromosome at instant t.
However, this score is not enough to select or discard chromosomes from a popu-
lation, since it does not have any temporal perspective: the chromosome that is
proposing the best prices during the previous negotiations could be discarded by
only returning one inexact price at a given moment. To deal with this issue, the
score at time t is weighted by a memory factor M ∈ [0, 1] with the past scores as
shown in Equation 4.2.

Scoret = (1−M)· |Pricingt(
−→
P ,
−→
G)−RefV alt|+M ·Scoret−1 (4.2)

The higher the memory rate M is, the higher importance is given to past price
offers. The lower M is, the higher importance is given to the last offer.

4.2.3 Selection and reproduction of chromosomes

After all the chromosomes are evaluated, the population is sorted according to the
score of the chromosomes. A fixed percentage of the last chromosomes in the sorted
population is discarded. At last, the missing population is restored with descendants
of the most effective chromosomes, which will inherit most characteristics of their
parents with small variations due to possible mutations. The chromosomes that will
be crossed for having offspring are chosen successively from the most effective to the
less effective ones, until the population is restored again.

When two chromosomes are having offspring, a crossover index between 0 and
the length of the genome is chosen randomly, and the genomes of the two parents
are divided in this index. The first division of the genome of parent 1 and the last
division of the genome of parent 2 are copied in the genome of descendant 1. The
first division of the genome of parent 2 and the last division of the genome of parent
1 are copied in the genome of descendant 2 (see Figure 4.1).

75

Figure 4.1: Process of crossing two chromosomes and mix their genome in their
offspring. Genes with black background represent random mutations

During the process of crossing and copying genomes, some random mutations
can occur, with very low probability: a gene is multiplied by a random number with
a Normal distribution, whose mean value and standard deviation are 1.

4.3 Evaluation of the model

Four Cloud providers are competing in a services market whose demands are variable
across the day (few demand in the early morning, peaks of demand in the evening).
Each of the four providers has a different pricing strategy:

Static Pricing. Offered prices are the 5% between the Reservation Price of the
Seller (RPseller) and the Reservation Price of the Buyer and (RPbuyer). Any other
percentage could be chosen, but our previous work [32, 27] demonstrated that 5%
gets good results in most demand scenarios. Although the seller knows its own RP,
the buyer does not communicate its RP to the provider, so it only can be estimated
in function to the historic prices and other market data. Equation 4.3 shows the
used pricing formula.

PriceStatic = RPseller + (RPbuyer −RPseller) · 0.05 (4.3)

Random Pricing. Prices are offered randomly, in an uniform distribution,
between RPbuyer and RPseller. This is not a real pricing model, but it is included
in the experiments to be compared with the genetic pricing models and show that
they do not behave randomly, as sometimes apparently do.

Utility Maximisation Price. This provider uses the dynamic pricing model
introduced in Chapter 3. It prices according to the models that consider the market
and resources information.

Genetic Pricing. Applies the genetic pricing algorithm explained in Section 4.2
with the parameters and constants described in Section 4.3.1. The offer price is the
output of the first chromosome in the list, which is ordered by the calculated scores
as explained in Sections 4.2.2 and 4.2.3. When deciding the size of the population
of chromosomes and the mutations rate, it must be considered the advantages and
inconveniences of the choice. Providers with a large number of chromosomes and a
small mutations rate are pretty stable, but they are less capable to adapt quickly to
changes in the environment. On the other hand, providers with less chromosomes

76

and more mutations converge quicker to a good solution, but they are less stable,
and small changes in the environment could make them bouncing to bad price offers.

4.3.1 Simulation environment

The simulation of this chapter follows the methodology stated at background chapter
(Section 2.7). Each request from the clients includes information about the number
of CPUs required for the deployment of the task and the range of QoS, which can
be Gold, Silver, or Bronze. The provider will make bigger efforts for fulfilling SLAs
whose QoS range is Gold. The Reservation Price in Gold tasks is 25% higher than
in Silver tasks and 66% than in Bronze tasks.

The frequency of requests is variable: from 2 tasks/hour (off-peak hours) to a
maximum (peak hour) that is changed across the multiple simulations. The value of
this maximum varies from 2 to 32 tasks per hour. Each task can require randomly
from 1 to 4 CPUs, and only providers that have free resources can accept an incoming
task and offer a price. Each provider has 16 CPUs.

The set of parameters, chosen by their influence in the final price, is
−→
P =

{Q,C, a(t)}, where Q is the QoS category (Bronze = 1, Silver = 2 and Gold =
3), C is the number of CPUs, and a(t) is the aggressiveness factor as previously
defined in Equation 2.4. The memory rate M (Equation 4.2) is 0.9. This value has
been chosen because it allows chromosomes to ascend in the ordered population,
and avoids that a chromosome falls down if it reports only a bad offer price. Some
previous tests revealed that M does not have to be exactly 0.9: it also could have
similar values such as 0.8 or 0.95. Small values, such as 0.5, make the system too
unstable and the provider cannot converge to a good solution.

Regarding the flexibility of the genetic algorithm, two types of genetic providers
have been tested: a flexible one, with 200 chromosomes and a mutation rate of
6%, and a rigid provider with 500 chromosomes and a mutation rate of 1%. Flexible
provider means that it can converge quickly to a good solution, but it is unstable and
it quickly forgets past experiences. Since each chromosome has 25 genes (2n2+2n+1

when n = 3, according to the number of elements of
−→
P), 200 chromosomes in a same

provider is enough diverse and it introduces a small probability of redundancy.
Setting the mutations rate to 6% strengthens the quick change of population: in
average, each new chromosome will have 1.5 mutations.

The rigid provider increases its number of chromosomes by 150% to add possi-
bility of redundancy and, with a mutation rate of 1%, only a mutation will occur for
each 4 descendants. As the experiments show, those values will make the population
of chromosomes more stable and uniform, and the provider will converge slowly to
offer competitive prices, but it is more stable against noises.

For each chromosome evaluation and selection in both rigid and flexible providers,
the lowest 50% of the ordered population is discarded and replenished with the de-
scendants of the other 50% of population. When populations are large enough, this
replacement proportion value could be also 40%-60%, 60%-40%, or any other equi-
librated rate that guarantees that the best chromosomes during the last iterations
are kept.

The chosen constant values of the experiments are not important from a qualita-
tive point of view, because the goal of this research is to observe how variations can

77

Figure 4.2: Comparison of revenues between four types of pricing. A provider with
a flexible genome (200 chromosomes and 6% of mutations) is used.

affect positively or negatively on results. Because the experimental environment is
simulated, the goal is to show how, for example, adding rigidness to the providers
leads to more stability in the results, but less capacity of adaptation.

Several simulation sets, with same environments but different maximum tasks
per hour, have been repeated and the comparisons of revenues in providers have
been commented. 5 weeks of sales in a competing market have been simulated, but
the first week is not counted for the statistics, because it is considered a prudential
training period for the genetic providers.

Results are evaluated in terms of revenue: the client sends its task to the provider
that offers the best price, and the provider earns the amount of money that is agreed
between the two parts.

4.3.2 Comparing genetic and utility-based dynamic pricing

Figure 4.2 shows the revenues of the four providers described in Section 4.3. Random-
pricing provider is the most inefficient of all the providers, excepting when the mar-
ket is extremely overloaded and the clients accept any price below the Reservation
Price of the Buyer. The revenue of static-pricing provider is increased linearly with
the number of maximum tasks per hour: at more tasks with static price, the same
proportion of revenue. The random nature of genetic algorithms introduces some
noises in the results, such as the small perturbation in the revenue of providers when
the maximum tasks are 12 per hour.

Although utility-maximisation provider is a good solution compared with static
pricing, Figure 4.2 shows that the genetic provider gets the highest revenue in most
scenarios. When the maximum number of tasks is high, both solutions are similar.
Genetic pricing showed its effectiveness mainly in equilibrium markets, which is the
status that markets tend to. Both right and left extremes of the graph (respectively

78

Figure 4.3: Comparison of revenues between four types of pricing. A provider with
a rigid genome (500 chromosomes and 1% of mutations) is used.

demand and offer excess) are unrealistic scenarios.

4.3.3 Comparing genetic providers by flexibility

Figure 4.3 shows how rigid genomes do not introduce so much perturbation as flexible
genomes, but it does not mean that they are more suitable in terms of revenue
maximisation. To check which flexibility grade is more suitable in Cloud computing
markets, the same experiment is repeated with a rigid and a flexible genetic provider
competing in the same market. Figure 4.4 shows the results of the experiment, and
some relevant information can be extracted from it:

• Two genetic providers add instability to the results. It is because the genetic
algorithm proposed in this market imitates the best pricing in each moment.
Static and utility-based pricings are predictable, if the genetic provider takes
their pricing attempts as input it will be much more stable than if it takes the
output of another genetic (and unpredictable) provider.

• Within this instability scenario, a flexible genetic provider earns more money
than the rigid one, since it can converge quicker to best solutions.

To illustrate this last statement, we measure the accuracy of pricing and speed
of convergence of both flexible and rigid genetic providers. Figure 4.5 shows the
difference of the offered prices and the Exercise Price, and speed of convergence
of both rigid (upper graph) and flexible (lower graph) genetic providers. If the
difference is 0, it means that the price offered by the genetic provider is actually the
Exercise Price.

79

Figure 4.4: Comparison of revenues when genetic providers with both rigid and
flexible genomes are competing.

Both figures show the influence of noises in the genetic providers, which made
them spontaneously evolve to offer prices far from the Exercise Price. However, a
provider with a flexible genome is more stable against noises. The left part of the
graph in Figure 4.5 also shows that the rigid genetic provider takes much more time
in getting trained to be competitive in its prices.

4.4 Conclusions

This chapter showed the effectiveness and capacity of adaptation of genetic algo-
rithms for pricing in Cloud Computing Markets. In a competitive environment,
where providers cannot know which strategy other providers will follow, genetic
providers earn up to the 100% more than utility-based dynamic pricing providers,
and up to 1000% more than a typical static-pricing provider.

The proposed genetic algorithm is easy to implement and it is flexible enough

to be used with a huge set of parameters
−→
P , even when there is no evidence that

some of the parameters have a real influence in the price: the evolutionary selection
process will discard all the invalid parameters, so the proposed model can be used
to make decisions in complex, even chaotic, environments.

The experiments strengthen what is exposed in the Hypothesis H2: Cloud providers
can adapt their behaviour to changing market environments if they are provided with
models and policies that consider both quantitative and qualitative changes in the
environment. And this adaptation provides a competitive advantage over providers
without self-adaptation.

In unstable/unpredictable markets, the experiments clearly showed that a provider
with a flexible genome is more stable against noises and rough changes, and evolve
to competitive pricing quicker than a provider with a rigid genome.

80

The research performed in this work area has resulted in the publication of a
paper in an international conference:

• M. Maćıas and J. Guitart, “A Genetic Model for Pricing in Cloud Computing
Markets” in Proceedings of the 26th ACM Symposium On Applied Computing
(SAC’11), Special Track on Cloud Computing, pp. 113-118. Taichung, Taiwan,
March 21-24, 2011. ISBN: 978-1-4503-0113-8. doi:10.1145/1982185.1982216

81

Figure 4.5: Difference between offer price and Exercise Price, and speed of conver-
gence, of a provider with a rigid genetic algorithm (upper graph) and a provider
with a flexible genetic algorithm (lower graph)

82

Chapter 5

Trust and Reputation

5.1 Introduction

Chapter 3 showed that Cloud Providers could not always fulfil the agreed QoS for
several reasons, such as high load of resources, poor admission control, or dishonest
behaviour. This chapter describes a reputation system to help clients choosing a
provider and allow avoiding the providers with low QoS or providers with a dishonest
behaviour that intentionally do not provide the agreed QoS. This system would
motivate providers to consider the impact of their decisions on their reputation and,
in consequence, on their business objectives.

Online reputation systems help mitigate the information asymmetry between
clients and providers in commerce markets. With the popularisation of the World
Wide Web, sites such as eBay [55] allow their users to submit and consult information
about quality of products or the trustworthiness of both buyers and sellers. Such
reputation systems enforce the confidence between parties and boost the number of
commercial transactions.

Traditional web reputation systems are based on reports from humans. This
service can be part of a site (e.g. eBay reputation) or an independent site. They
have clear business models: they increase the trust level to boost the economic
transactions; also the service provider may get paid by advertisement. The incomes
from the business model will amortise the cost of providing the service.

However, the aforementioned business model is not directly portable to Cloud
Computing markets because the users and the providers of the resources are au-
tonomous agents that are not able neither to communicate nor understand the hu-
man language; in addition, they are not a target for advertising campaigns and the
Reputation Service Provider cannot make business from advertising. This raises two
issues: (i) opinions about Cloud providers must be modelled for allowing their auto-
matic processing; (ii) if there is no business model for a reputation service, nobody
will provide it. There is many related work about modelling a reputation service
(see Section 7.6), but the need to make it economically feasible must be faced.

Reputation systems are vulnerable to reputation attacks [56]: dishonest com-
panies can send biased opinions to increase their reputation or to decrease the
reputation of their competitors. Such behaviour can be mitigated in traditional
reputation systems by moderating the opinions. In addition, most users would be
smart enough for discarding the dishonest reports. None of these methods can be

83

applied to a decentralised, automatised agent-based reputation system.
Reputation allows markets to exclude dishonest providers. However, spot failures

or system outages may also decrease the reputation of honest providers. These
outages have a double economic impact: the provider must pay penalties for the
VMs whose QoS has not been fulfilled, and it will lose future clients due to the loss
of reputation. For this reason, providers operating in a Cloud Computing market
require trust-aware management policies aimed at retaining their reputation when
unexpected failures occur.

This chapter aims to validate Hypothesis H3, which deals with the problems
raised in research question Q4: Can Cloud providers improve their business by
considering other BLOs different than short-term economic profit? This chapter
contributes to our thesis research with two differentiated parts:

1. Definition of a reputation model that applies to Cloud Computing business
model and is easily implementable in a decentralised Peer-to-Peer (P2P) net-
work [57]. The cost of providing such service is not assumed by any central
organisation; it is proportionally assumed by all the actors in the system.
This block also provides a statistical analysis model that allows market partic-
ipants to detect dishonest behaviours from other peers that want to bias the
true reputation of a provider.

2. Proposal and evaluation of the operation of Cloud infrastructures by consid-
ering the impact of the reputation in the revenue. Definition of policies to
minimise the impact of system failures in the reputation. On one side, we
discriminate clients according to their reputation to favour those with high
reputation under some conflicting situations, since those clients will impact
more positively the reputation of the provider. On the other side, we analyse
the impact of management actions in the reputation and the revenue of the
provider to select those with less impact when an actuation is required.

5.2 Description of the reputation model

5.2.1 Previous definitions

Let
−→
U = (u1, u2, . . . , un) and

−→
V = (v1, v2, . . . , vn) be two vectors that contain n

elements. The Element-wise Product is defined as
−→
U �

−→
V = (u1v1, . . . , unvn) and

the Element-wise Division is defined as
−→
U �

−→
V = (u1/v1, u2/v2, . . . , un/vn).

Let CP = {cp1, cp2, . . . , cpm} be the set of m Cloud Providers that are competing
in a market to sell their resources to the clients.

Let CS = {c1, c2, . . . , cn} be the set of n clients that want to host their services
or tasks in the set CP of Cloud providers. Each client cx is communicated to a set
of peers, represented by the set Px = {px1 , px2 , . . . , pxr}, formed by r peers of client cx.
Each peer is also a client (Px ⊆ CS).

The actors of the reputation system communicate through P2P networks. Due
to the decentralized architecture of Cloud Market Middlewares, it would be difficult
for an entity to maintain a centralized reputation system, because few users would
pay to help amortizing the maintenance costs. Our distributed P2P is economically

84

more realistic, although it involves some trustworthiness issues that were considered
in our previous work.

When clients want to buy resources to host their services or applications, they
demand their services in the Market, by providing the same SLA as described in

previous chapters, whose SLOs are decomposed as
−→
S = (s1, . . . , sk).

Both Cloud clients and providers are entities that have a degree of trust between
them as individuals. The degree of trust can be expressed in multiple terms, repre-
sented as a Trust Vector: a client trusts a provider in multiple facets, related to the

different terms of
−→
S (e.g. a Cloud provider could provide resources that are suitable

for CPU-intensive applications but unstable in terms of network connection). Let
−→
T (A,B) = (t1, . . . , tk) be the Trust Vector from the entity A to the entity B. That
is, how much A trusts B. Both A and B belong to CP or CS.
−→
T (A,B) = ω1

−→
D(A,B) + ω2

−→
R (B); that is, the overall trust from A to B has

two components:
−→
D(A,B) is the direct trust from A to B, which is built based

on previous experiences between A and B;
−→
R (B) is the reputation trust, which is

calculated by asking the set of peers of entity A about their experiences with B (see
Section 5.2.2, Equation 5.2) . In plain words, the direct trust is what A directly
knows about B and the reputation trust is what the others say about B. ω1 and ω2

are used to weight how much importance the client assign to each of the terms, and

may vary depending on each particular client. All the terms of
−→
T ,
−→
D and

−→
R are

real numbers between 0 (no trust) and 1 (maximum trust).

Because trust and reputation have many terms, a provider could deserve high
trust when considering some SLOs and low trust when considering others. This does
not have to be detrimental to a given client. For example, a provider that deserves
high trust only in terms of CPU could not be suitable for many applications such as
web services or databases, but could be suitable for some CPU-intensive scientific
applications. Some types of workloads can be allocated in such providers with a high
degree of trustworthiness. This raises a question: which incentive would clients get
for allocating their workloads in such providers? Would it not be better to allocate

them in providers whose trust level is high in all the terms of
−→
T (A,B)? The response

would be affirmative if there were not economic incentives at client side. If a provider
is able to guarantee the QoS requirements of a client at lower prices, the client will
be motivated to allocate there its workloads; even if the provider has low reputation
in factors that are not important for the client.

Considering the aforementioned, each client cx has its own Trust Ponder Vector−→
I (cx), which weights each of the SLOs of

−→
T (A,B) as a function of the importance

the client assigns to each of them. The Element-Wise product
−→
T (cx, cpy) �

−→
I (cx)

returns a vector that scores how trustworthy is the provider py as a function of three
facets: the reputation of cpy, the direct trust from cx to cpy and the QoS needs of

cx. All the terms of
−→
I are real numbers between 0 and 1.

Let Score(SLA, cx, cpy) be a function that scores the suitability of the provider
cpy as a function of the SLA and the trust from client cx to provider cpy. For each
SLA negotiation, the client will choose the provider whose Score is the highest.

The definition of Scorexy may vary depending on the client policies and negoti-
ation strategies. For evaluating the validity of the model, the clients evaluated in
this chapter score the providers according to Equation 5.1. In this equation, the

85

scores are always negative. The nearer to 0 the better score. The client divides the
calculated trust from cx to cpy by the Trust Ponder Vector (element-wise division),
and the negative of the magnitude of the resulting vector gives a scoring that shows
how trustworthy is a provider for the preferences of cx (in positive it would be the
lower the better, that is why the result is multiplied by -1). This score is divided
by the price: the client would accept sending tasks to providers to which the trust
is lower if the price they establish is low enough.

Score(SLA, cx, cpy) = −

∥∥∥−→T (cx, cpy)�
−→
I (cx)

∥∥∥
Price

(5.1)

The scoring function in Equation 5.1 will motivate providers to keep its maximum
trust level and, if not possible, to lower prices.

5.2.2 Dishonest behaviour towards the reputation model

A Cloud Provider could not provide the amount of resources that previously agreed
with a given client. This fact can be caused by technical failures [50], errors in the
calculation of the number of resources to provide or dishonest behaviour. The rep-
utation model described in this section is intended to alert the market participants
when a provider is not fulfilling its agreed SLAs.

However, dishonest providers could enable fake clients to perform collusion: to
report false or dishonest feedback for (1) increasing artificially the reputation of
a provider; or (2) decreasing artificially the reputation of other providers from the
competition. Since our reputation model is decentralised and unmanaged, the clients
need a model for preventing false reports from dishonest peers.

Let T (cx, py) be a single-term trust relation from a client cx ∈ C to one of its
peers py ∈ Px. Let P z

x = {pz1, . . . , pzs} ⊆ Px the subset of s peers of cx that have any
direct trust relation to provider cpz (that is, they can report previous experiences
to cpz), the Reputation Trust from cx to cpz is calculated as:

−→
R (cx, cpz) =

S∑
y=1

(
T (cx, p

z
y) ·
−→
D(pzy, cpz)

)
�

S∑
y=1

−→
T (cx, p

z
y) (5.2)

Equation 5.2 is calculated by asking the peers that have any direct relation with
cpz and pondering their reports by the direct trust from the client to its peers.
The report of a client to which there is high trust has more weight than the report
of a client to which there is low trust. The key issue is to establish this trust
relation between a client and its peers to avoid dishonest behaviours and give more
consideration to the accurate reports.

The trust relation between a client and its peers is continuously updated in base
to the following assumption: most peers are honest and, when asked, they report
their true valuation to the provider. Related work considers many incentives for
peers for reporting honestly [58, 59]. Our contribution is complimentary to them,
since we deal with the minimisation of the impact of the dishonest reports.

Assuming the aforementioned, the trust from a client to each of its peers is
calculated according to Algorithm 2:

86

begin
The average values and the variances of all the reports from the peers of

the P z
x set are stored, respectively, in

−→
A and

−→
Σ2 = (σ2

1, . . . , σ
2
s);

foreach pzy in P z
x do

−→
F ←

−→
A −

−→
D(pzy, cpz) = (a1 − d1, . . . , as − ds);

foreach |an − dn| in
−→
F do

if |an − dn| > α · σ2
n then

Decrease T (cx, py);
else

Increase T (cx, py);
end

end

end

end
Algorithm 2: Updating trust from cx to all its peers

To detect potentially bad reputations, Algorithm 2 checks which peers reported a
trust which is far from the other reports for the same provider. We stress potentially
because, by any reason, a honest peer could have been provided with bad QoS while
the others do not: because a punctual failure, or because the provider starts to
underprovision QoS by an outage or because it starts to behave dishonestly when
its reputation is high enough. These cases must not penalise too much the client that
starts reporting different than the others. Only repetitive reports that are different
would decrease considerably the reputation of a client.

There are two parts of Algorithm 2 that will depend on the client policies. α
multiplies the variance of the trust reports, and indicates how tolerant is the client
with the concrete reports that are far from the average. The lower α, the lower
tolerance. The other part that depends on the client policy is the function to
increase or decrease the trust on a peer. We have used a piecewise-defined function
that multiplies T (cx, py) as a function of how far the trust report from the average.
If there is no difference from a report to the average of all the other reports, the trust
relation is multiplied by MAX REWARD > 1. The trust relation is not affected
when |an− dn| = α ·σ2

n, and if |an− dn| > α ·σ2
n, the trust relation is multiplied to a

minimum of MAX PENALTY < 1. Instead of the simplicity of f(x), it is proven
as effective in the evaluation (Section 5.5).

Figure 5.1 shows that the slope of the linear function that penalises the trust
is less pronounced than the slope of the linear function that rewards the trust. In
addition, MAX PENALTY+MAX REWARD

2
< 1. The reasons are two: (1) the imbal-

ance betweenMAX PENALTY andMAX REWARD will difficult that dishonest
peers recover easily their trust; and (2) honest peers that, by any reason, punctu-
ally report values near α · σ2

n are not penalised with severity. Previous experiments
demonstrated that not dividing the function in pieces with different slopes would
entail too much instability in the trust updating, and honest peers would lose their
trust without solid reasons.

When the trust to a peer reaches 0, it is definitely expelled from the trust ring
of the client, and its trust cannot be recovered any more.

87

Figure 5.1: Function to multiply the trust to a given peer, based on its previous
report

5.3 Considering reputation during SLA negotia-

tion

As proven in previous work [49], low reputation lead to decrease the revenue of a
Provider: the lower trust the less currency will the clients pay for a service. In other
words, if two providers offer the same QoS at equal prices, the client will choose the
provider whose reputation is the highest. By this reason, a provider needs to adjust
its price to its real reputation due to the effects of market competition. This thesis
defends the need to consider reputation as a facet to negotiate SLAs, in addition
to the factors that were considered in previous chapters (market status, resources,
QoS and client information). There are two reasons: adjusting the revenue to the
reputation will allow providers to maximise their benefit when reputation is high
and sell its resources when reputation is low; the other reason is that selling the
resources when reputation is low will allow a provider to recover its reputation.

Pricing as a function of the trust involves two key issues that must be solved:

Calculating the trust from a given client. As seen in Section 5.2.1, the trust from
a client to a provider depends on three factors: the direct trust, the reputation as
reported by all peers, the Trust Ponder Vector, and the weights that a particular
client assigns to both direct trust and reputation. Direct Trust and Reputation
can be approximated statistically, but the Trust Ponder Vector and the weights are
completely private parameters that depend on the preferences of the client.

Defining a pricing function. Each provider must decide what are the proportion
and distribution that trust would influence the prices. It is difficult to model because
it depends on the emergent behaviour of all the market clients. Chapter 4 demon-
strated that Genetic Algorithms are suitable for this type of problems, because they
rapidly adapt the pricing function to a changing/unknown environment. However,
for simplification purposes, this simulation in this chapter uses linear correlations
between reputation and price, based on historical information [49].

88

5.4 Considering reputation during SLA enforce-

ment

An infrastructure provider does not know the model that each client is using for
evaluating and reporting the QoS, so it is difficult to know how its actions will affect
its reputation. But it can know that the higher QoS is provided to a client the
higher trust values will be reported to the reputation system; unless the client is
behaving dishonestly and reporting false values.

The reputation system that is used as framework for this work is open and peer-
to-peer oriented, and allows each of the participants of the system to know the
reputation of the provider, but also helps identifying those clients that are reporting
false valuations of the service.

In this work, we propose to maximise the reputation as a key objective that will
help providers increase their revenue due to the enforcement of the trust relation
with their clients. Considering all the actions and policies that a provider can trigger
to maximise its reputation, we classify them in two groups:

1. Policies that minimise the impact in reputation derived from SLA violations.
This group of policies selectively violate SLAs (to not provide the agreed QoS
during a period of time, but restoring it when possible) or cancel SLAs (to not
provide any service or resource until the SLA expires).

2. Policies that allocate/redistribute VMs to increase the success rate of the poli-
cies of the first group. If a physical node hosts VMs from users with similar
trustworthiness, and this node is overloaded, it would be difficult to select
which violations have the less impact. These policies will be applied by dis-
criminating/classifying users during provisioning time, or redistributing VMs
at runtime by migrating them.

We consider the policies from the first group: selective SLA violation and/or
cancellation: to prioritise trustworthy users under certain situations in which a set
of SLAs that are already allocated must be violated temporarily or directly cancelled
by some reason (e.g. errors in the resource provisioning process [60] or a hardware
failure that makes unavailable part of the physical resources).

When the monitoring system of a Cloud provider detects that there are no enough
resources to fulfil the workload of all the VMs in a given node, the process described
in Algorithm 3 is triggered.

Data: list of running VMs in a given node
1 order VMs according to a given criterion;
2 n:=0;
3 while workload > 100% do
4 pause VM n from the ordered list during t seconds;
5 n:=n+1;

6 end
Algorithm 3: Generic algorithm for Selective SLA Violation/Cancellation in each
node

89

For reputation maximisation policies, the criterion to order VMs (line 1) is the
trustworthiness to the client that owns it. To calculate the trustworthiness to a
client, the provider can enter in the reputation system as a normal peer, and poll
several clients about several providers. If a given client is usually reporting values
that are far away from the average, it will be considered unreliable.

The value of t will determine if the SLA is violated (t < time until SLA expires)
or cancelled (t ≥ time until SLA expires). During normal operation, t is always
the time until monitoring data is updated with new values. During other severe
problems, such as hardware failures, the VMs running in the nodes with problems
are directly cancelled.

In addition to the discrimination of users according to their trustfulness for maxi-
mizing the reputation of the provider, Algorithm 3 is generic enough to be triggered
for achieving other BLOs, such as maximisation of the profit or classification of
clients according other business criteria [61]. The following section will evaluate
the effectiveness of the trust maximisation policy when compared with the Selective
violation of SLAs according to other BLOs.

As we will show in Subsection 5.5.5 the criteria for ordering VMs may be dy-
namically switched depending on the context of the resources operation. At the
evaluation in Subsection 5.5.5, the provider uses revenue maximisation during nor-
mal operation, and switches to reputation maximisation to the nodes to which is
detected any hardware failure.

We must emphasize that our policy proposes to cancel SLAs only when the
provider is not able to fulfil them all. This should be infrequent, used only when the
violation is unavoidable, because the economic penalty is paid whatever the client
trustworthiness is. The idea is at least to minimize the impact in the reputation of
the provider. A bad usage of this policy could make the clients lose the confidence
in the provider, thus losing profit.

5.5 Experiments

This section validates the model in Section 5.2 by means of a custom Market Repu-
tation Simulator [36] that is available online to facilitate replicating the experiments.
For more details about the fundamentals of the simulation process, please refer to
Section 2.7 of the background chapter.

In the simulation, clients look for resources to allocate their tasks in the providers
that fit their QoS requirements. The experiments consider three SLOs: CPU, disk
and network bandwidth. Therefore the Trust Vector and the Trust Ponder Vector
is formed by 3 terms. Each experiment is a succession of market iterations. Each
market iteration performs the following steps for all the clients in the market:

1. The client sends an offer to the providers. The offer specifies the QoS require-
ments and the time slot. The providers that have enough resources to handle
it return a price.

2. The client asks its peers for the reputation of the providers that returned a
price.

90

3. The client scores all the providers according to Equation 5.1. It reaches an
agreement with the provider whose score is the highest.

4. The client updates its trust to its peers according to Equation 5.2. When the
task is executed, it also updated its direct trust relation to the provider as a
function of the actual QoS.

The workload follows the same web pattern as in previous chapters, which varies
depending on the hour of the day and the day of the week.

The trustfulness of the clients follows a folded normal distribution [62] with
mean=0.5 and standard deviation=0.2. That means that most clients have trust
values near 1 and a few clients are reporting dishonestly.

The values of the revenue function (Equation 2.1) are as follows: MRT = 0.05
(that means that if the agreed QoS is not provided during the 5% of the time or
less, the SLA is not considered as violated); MPT = 0.3 (when the agreed QoS
is not provided during the 30% of time or more, the SLA is completely violated);
MP = −1.5MR (if the provider completely violates an SLA, it must pay back the
150% of the price that the client paid initially).

The simulations rely on some constant values of which functionality is not to
reflect real market data, but to evaluate the model in terms of relative results and
tendencies: the providers normally provide the 100% of the agreed QoS during off-
peak hours and around 97% during peak hours. At the beginning of the experiments,
all providers and clients have an initial direct trust of 0.5. The startup time since
the initial trust values converge to their real values is not considered for clients, and
it is initially mitigated at provider side with price discounts as a function of the
initial trust.

Other constant values are described in their respective experiments.

5.5.1 Basic Provider-side reputation

In the first experiment, five providers are competing in a market during 100 simu-
lation steps. Four providers are honest and a provider is behaving dishonestly: it
only provides the 60% of the QoS that it has previously agreed with the client. In
addition, one of the honest providers suffers an outage [50] in its network at step
33. In consequence, it is providing the 50% of its network capacity until step 67.

Figure 5.2 shows the average trust from the clients to the providers. All the
elements of the trust vectors are shown separately, but grouped the following way:
the trust terms corresponding to the SLOs of the dishonest provider are shown as
crosses; the trust element corresponding to the network of the provider that suffers
the outage is a continuous line; the trusts for the rest of SLOs are shown as points.
Figure 5.2 shows that the dishonest provider has a reputation proportional to the
percentage of agreed QoS that is providing. The market also quickly notices that
one of the providers is starting to provide a bad QoS in network and, after a quick
decrease of the reputation, it slowly converges to 0.5, which corresponds to the
percentage of QoS that is providing due to the outage. When the provider solves
its network problems, its reputation increases fast, until it converges to the average
reputation of the other SLOs.

91

Figure 5.2: Evaluation of reputation of providers

5.5.2 Client-side reputation

This section evaluates the trust relations between peers in the scenario of the pre-
vious section. In that experiment, the market demand is formed by 24 clients that
negotiate with the providers for allocating the workloads in the cloud resources. Be-
fore starting a negotiation with a provider, a client ask its peers for the reputation of
the provider, then weight it with its direct trust (if any) and multiply it by the Trust

Ponder Vector
−→
I (cx). When the provider returns a price for a requested amount of

resources, the client evaluates it as a function of the price and the pondered trust.

When the client calculates the reputation of a provider, it tries to detect the
dishonest peers as explained in Section 2: it decreases or increases its trust to each
peer depending on what they report. Our research does not intend to set the optimal
values for MAX REWARD and MAX PENALTY constants (Figure 5.1), so we
have set MAX REWARD = 1.05 and MAX PENALTY = 0.8 as intuitive values
for showing the tendencies. Different values would make the trust to peers evolve
quicker or slower.

In the experiment, the dishonest provider infiltrated two peers that report trust
values near 1 for the dishonest provider (while its real reputation is 0.5) and the
50% of the actual trust for the other providers. Figure 5.3 shows that, as initial
state, all the peers of a given client have a trust of 0.5. The first dishonest client is
reporting false trust values from the beginning, so it is quickly expelled from the list
of peers (when it reaches trust 0). The trust to all the other providers is increased,

92

Figure 5.3: Evaluation of trust to peers

including the second dishonest peer, whose strategy is to increase its reputation for
increasing the influence of its false trust reports in the future. When the second
dishonest client starts cheating at step 50, the client detects it and progressively
decreases its reputation until reaching 0 value at step 59.

5.5.3 Effectiveness of Scoring function to allocate tasks

To evaluate the effectiveness of Equation 5.1 as rule for selecting a suitable provider
while saving money, four providers are competing in a market for selling CPU, Disk
and Network Bandwidth as SLOs: the first provider has the maximum reputation in
all the SLOs; the second, third and fourth provider have the maximum reputation
in all the SLOs but in CPU, Disk and Network, respectively. 32 clients want to
submit their workloads to the providers, so they score them as a function of the
trust, the Ponder Vector, and the price they ask. The 32 clients are divided in four
groups depending on which necessities they have respecting the trust to each SLO
(see Table 5.1). Values of table would correspond to different types of workloads,
for example: applications with a balanced resource usage (group 1), CPU-intensive
applications that do neither intensively use disk nor network (group 2), Database
applications with intensive disk and network usage (group 3) or some kind of web
services that intensively use CPU and Network but not disk (group 4). The values
of Table 5.1 do not reflect any real measure of workloads. Their purpose is to be
varied to see how the scoring function of Equation 5.1 behaves.

93

Group
−→
I (cx) = (icpu, idisk, inetwork)

1 (1, 1, 1)
2 (1, 0.3, 0.3)
3 (0.2, 0.8, 0.6)
4 (0.6, 0.3, 1)

Table 5.1: Values of the Trust Ponder Vector for each group of clients

In the very first iterations of the simulation, the tasks are allocated in the dif-
ferent providers pseudo-randomly. When the reputation of each provider is near to
their true QoS, the following allocation of tasks is measured:

• All tasks from group 1 are placed in the provider with maximum QoS in all
the SLOs. QoS is critical for this group and they are not willing to allocate
their tasks in other providers despite the lower prices.

• All tasks from group 2 are placed at ∼50% in provider with low network
reputation and ∼50% in provider with low disk reputation. Only CPU is
critical for this group.

• All tasks from group 3 are placed in providers with low CPU reputation,
because other SLOs have high importance.

• All tasks from group 4 are placed in provider with low disk reputation, because
disk is the SLOs with the lowest importance.

The measured results tend to round numbers (e.g. 100% of tasks are allocated
in the same provider when the system becomes stable) because of the experiment
is repeated in a controlled simulation environment. A real market would add some
statistical noise to the results.

5.5.4 Reputation-aware resources operation

To evaluate the reputation-aware resources operation, we have simulated 5 days
of a market operation with three types of providers, according to their policy for
discriminating SLAs during resources overload (see Algorithm 3):

• A provider that randomly discards SLAs. It is used as a baseline for evaluating
how the system would behave without any resources operation policy.

• A provider that discards the SLAs that report less revenue. That has been
demonstrated to be effective for maximizing the revenue of a provider [60].

• A provider that discards the SLAs from the clients to which there is low trust.

To evaluate the different scenarios, we introduced a global outage of the data
center at day 3 of the simulation. During the outage, the providers only have the
20% of their usual resources. The outage has been programmed to happen during
a peak of workload. That means that about 80% of the allocated SLAs are to be
violated during the outage.

94

Figure 5.4 shows the evolution of the reputation for the three providers. During
off-peak hours, when workload is low, reputation is near the maximum value for all
the providers. During the peaks, the graph shows the effect of the increase of SLA
violations in the reputation. While the reputation maximisation policy keeps repu-
tation near 1 during both peaks and off-peaks, the random policy used as baseline
clearly shows how the reputation decreases when no policies are applied. Despite of
the revenue maximisation policy does not consider reputation, it indirectly keeps it
in between of random and reputation maximisation policies: the provider try to first
pause the VMs whose SLA violation time is over the Maximum Revenue Threshold
(MRT in Equation 2.1). In consequence, it violates less SLAs and, indirectly, the
reputation of the provider is higher than the reputation of a provider that does not
apply any policy.

The reputation is much lower in the three providers during the outage around
time step 2000 because around the 80% of the SLAs are violated. The difference of
reputation between revenue and reputation maximisation is proportionally higher
during the outage because the reputation maximisation provider cannot keep SLA
violations under MRT .

Figure 5.4: Evolution of reputation for three types of providers

Figure 5.5 shows the evolution of the spot revenue over time for the three
providers. The revenue is expressed in a fictitious currency, because the revenue
information is only important in terms of tendencies and proportions. The figure
shows that during normal operation of resources, the revenue of the reputation max-
imisation provider is slightly lower than the revenue of the revenue maximisation

95

Figure 5.5: Spot revenue of three types of providers

provider. This arises a discussion topic: is reputation maximisation a true BLO if
it cannot maximise the revenue? The answer could depend on the actual objectives
of any organisation.

However, Figure 5.5 shows that reputation maximisation policy has a real impact
in the revenue of the provider during the outage. After all, the reputation of the
revenue maximisation provider is also high during normal operation (> 0.9) and
only the outage has a true impact in its reputation.

5.5.5 Context-aware resources operation

Considering the previous observations about Figure 5.5, we have introduced a new
provider that is context aware of the environment (normal operation or outage)
and dynamically switches the revenue/reputation maximisation policy depending
on what is expected to report the highest economic profit. Summarizing, the rev-
enue maximisation policy is used when the provider is operating normally; if the
monitoring information shows that there is an outage in part of the resources, the
provider switches to the reputation maximisation policy and returns back to revenue
maximisation policy when the systems are again in normal operation.

The simulation has been repeated with the three providers of the previous sec-
tion, plus the context-aware provider. In the figures of this section, the random
baseline provider has been removed to improve the readability of the figures.

Figure 5.6 shows only a time window of the global simulation for easier visualisa-

96

tion. It shows that the context-aware provider maintains a reputation rate similar to
the revenue-maximisation provider during normal operation (which is high enough
to get high revenue) and a rate similar to the reputation-maximisation provider
during the outage (to minimise the impact of low reputation in revenue).

Figure 5.6: Evolution of reputation for three types of providers, including context-
aware policy switching

Our experiments show that the revenue of the context- aware policy is similar
to the revenue maximisation policy during normal operation. Figure 5.7 shows the
time window that comprehends an outage of the system and the time after the
normal operation of the provider has been re-established. Figure 5.7 shows that the
revenue of the context-aware policy is similar to the reputation maximisation policy
during an outage and the time after it, while the reputation of the provider is being
recovered.

Figures 5.6 and 5.7 show that the results for the context-aware policy look slightly
different than the corresponding policies because the behaviour of the market varies
in different simulations. The market is a complex system and its behaviour is de-
termined by some parameters which are defined using statistical distributions. In
addition, it is highly influenced by small differences in the initial status and the
actions of the other providers. Note that our paper does not focus on the absolute
values of the results, but in the analysis of the tendencies.

97

Figure 5.7: Spot revenue for three types of providers, including context-aware policy
switching, during and after an outage

5.6 Discussion: implementing the model in a real

market

This chapter demonstrates the validity of the reputation model from an experimental
point of view. Since we focus on the definition of the model, some implementation
details are not considered from a formal view. This section wants to argue the im-
plementability of the model, and what are the conditions for allowing the reputation
model being feasible from the trust and economic side. Summarizing, we identify
the following requirements:

• It is required to specify a communication protocol about trust information
exchange for all the peers in the same network.

• A digitally-signed proof of purchase must be provided by peers that report
their trust to a provider. The proof of purchase could be the agreed SLA,
digitally signed by both client and provider. In consequence, a trustworthy
Cloud Market requires certification authorities and identity management.

• Precisely quantify the SLAs to measure whether the provider is allocating all
the resources to fulfil them. Some resources, such as CPU cycles, are difficult
to measure accurately from a client side. We suggest negotiating in terms

98

of high-level metrics (e.g. web-services throughput) and then translate such
high-level metrics to low-level metrics by means of SLA decomposition [44].

The cost of implementing our trust model is not carried out by any centralised
component, but it is shared by all the peers. The cost for each peer, in terms of
memory space and extra calculations, is as follows: let s the number of SLOs in
an SLA; let r be the number of peers of a client; let m be the number of Cloud
Providers. According to the model of Section 5.2.1, the complexity of calculating
the trust of all the providers is O(s ·m ·r). According to Algorithm 2, the complexity
of updating the trust from a client to all its peers is O(r · s).

In terms of space complexity, a client needs to store a O(m · s) map with all the
direct trust values to all the providers, and another O(r) map with all the direct
trust values to its peers.

The incentive-compatibility property of the mechanism must also be discussed.
We suggest Cloud providers to penalise dishonest peers by increasing the price of
their resources for such type of peers. This has two positive effects on the mar-
ket: peers are encouraged to report the true valuation of the service providers, and
providers get an economic compensation for possible reputation attacks, as if it were
an assurance.

5.7 Conclusions

This chapter describes a reputation model that faces some open issues in the state
of the art. First, we propose a P2P architecture for dealing with the cost of provi-
sion of centralised reputation services, which may be a good architecture for other
markets but not for Cloud Computing. Second, we define a mathematical model for
calculating the trust relation from a client to a provider. This model also defines
trust relations between peers and updates them in function to statistical analysis
for detecting the trustworthiness of their reports.

In addition to the reputation and SLA negotiation model, we introduce a policy
to prioritise users according to their trustworthiness. This policy has a double
goal: (1) to minimise the impact of the SLA violations in the reputation of the
provider and, in consequence, in the revenue; and (2) motivate users to report true
valuations of the providers. This policy is not intended to motivate a dishonest
behaviour but to minimise the impact in the reputation when the violation of an
SLA is unavoidable. The common business objectives prevent providers from only
establishing SLAs with clients that give them good reviews, or establishing a black
list that contains clients with bad reports (even those who have been just honest),
because they would lose market share and decrease their profit. In addition, the
ignored clients would continue reporting bad reports and the provider would have
no chance to restore their trust to them.

The validity of the model is demonstrated through exhaustive experiments that
strengthen our Hypothesis H3: Cloud providers can improve their mid and long-term
Quality of Business if they consider other BLOs that are not directly related with
the revenue. After analysing the policy in comparison with others, we show that
providers that behave honestly and apply revenue maximisation policies, in most
cases indirectly keep a good enough reputation rate and achieve higher revenue

99

than the providers that apply reputation maximisation. The benefits of reputation
maximisation in terms of revenue are noticeable under conditions that imply a high
rate of SLA violations. Considering the aforementioned, we introduce a new type
of provider that switches between reputation or revenue maximisation policies de-
pending on the context. This provider achieves the best revenue in all the cases, and
always keeps good-enough reputation rates. Our experiments showed that policies
that are unaware of the reputation may have economic losses during system outages
while policies that are aware of the reputation keep economic profits (reducing the
penalties in an order of magnitude of -200%).

A key issue of reputation systems is to motivate their users to report true valu-
ations of the providers. The policies of this chapter help solving it because clients
that report true valuations have high reputation to their peers. Providers that have
interest on keeping high reputation will prioritise the QoS for trustworthy clients
under certain situations such as peaks of demand or an outage. As a consequence,
clients that want to benefit from this positive discrimination will report true val-
uations of the providers. Since the reputation model is peer-to-peer oriented, any
provider could join a network for polling the trustworthiness of a client.

This thesis does not consider the ethical issues of using such policies by dishonest
providers to cheat the clients with low reputation: not only dishonest clients, but
also clients that recently joined the reputation network.

The research performed in this work area has resulted in the following publica-
tions, including an full paper and a short paper accepted in international conferences:

• M. Maćıas and J. Guitart, “Cheat-proof Trust Model for Cloud Computing
Markets” in 9th International Conference on Economics of Grids, Clouds,
Systems, and Services (GECON’12). Lecture Notes on Computer Science
(LNCS), Vol. 7714, pp. 154-168. Berlin, Germany, November 27-28, 2012.
ISBN: 978-3-642-35193-8 (print version), 978-3-642-35194-5 (electronic ver-
sion), ISSN: 0302-9743. doi:10.1007/978-3-642-35194-5 12

• M. Maćıas and J. Guitart, “Trust-aware Operation of Providers in Cloud
Markets” Short paper accepted in the 14th IFIP International Conference
on Distributed Applications and Interoperable Systems (DAIS 2014). Berlin,
Germany. June 2014

100

Chapter 6

Risk Management

6.1 Introduction

As shown in Chapter 3, Cloud providers may not always fulfil the SLAs they agree
with the clients because of outages in the data centre or errors in the resource
provisioning process. Under some situations, not fulfilling the agreed SLAs can lead
to high economic penalties and a loss of reputation that can make clients with high
reliability requirements to not allocate their tasks in providers that have failed in
the past, as shown in Chapter 5.

Minimising the Probability of Failure (PoF) of the tasks that are allocated within
a Cloud Infrastructure can be economically infeasible. Overprovisioning resources
increases the cost and is economically and ecologically inefficient because the over-
booked resources are underused most time.

This chapter aims to validate Hypothesis H4, which deals with the problem raised
in research question Q5: How can Cloud Providers deal with the uncertainty and the
lack of information?

The research in this chapter has a main goal: to increase the fulfilment rate of
SLAs at the provider side by minimizing risk and maximizing the economic efficiency.
We introduce a risk model based on graph analysis for risk propagation, and we
model it economically to provide three levels of risk to the clients: moderate risk,
low risk, and very low risk. The client may decide the risk of the service and
proportionally pay: the lower the risk the higher the price. This model fits with the
provisioning model for different levels of QoS that was described in Chapter 3.

To achieve the proposed goal, this chapter introduces the following contributions:

1. Modelling of the PoF of a multi-tier service that is hosted in a Cloud data
center by means of the analysis of the links between virtual resources.

2. Introduction of preventive actions that would lead to the minimisation of the
PoF and, in consequence, a higher rate of fulfilment of SLAs.

3. A new revenue model that will help providing different levels of risk at different
prices, while adapting prices to the present value of the resources (this is, the
rate the resources decrease their value over time).

101

6.2 Multi-VM SLA negotiation

This chapter focuses two stages of the infrastructure provisioning: the negotiation
of SLAs between the clients and an Infrastructure Provider, and the provisioning of
resources to fulfil the terms of the agreement. Section 6.2.1 describes in more detail
how cloud appliances are described in term of low-level resources.

When the service provider buys Cloud resources, its broker sends an offer to
the cloud market to start a negotiation with the brokers of the cloud infrastructure

providers. The SLA of a set of VMs is described as SLA = {Rev(vt),
−→
S ,∆t, C,

−→
L }.

It is the SLA described in the background Section 2.5.1, with an extra component:−→
L describes how the resources are linked according to its description (see Section
6.2.1). Note that the client information C must include the desired QoS level (as
stated in Chapter 3) to be mapped with the risk level to apply (Bronze ⇒ Medium
risk, Silver ⇒ Low risk, Gold ⇒ Very Low risk).

6.2.1 OCCI Core model

We adopt the Open Cloud Computing Interface (OCCI) [63] Standard for describing
the set of resources that the SP is acquiring at the IP, and how the resources are
linked between them. The OCCI standard defines the following types:

• Compute: represents a computing node (e.g. a Virtual Machine or a Phys-
ical Host). It may have several statuses (active, inactive, suspended) and
associated number of resources (CPU and memory).

• Network: represents a network connection to the Internet. Its attributes are
the download/upload bandwidth.

• Storage: in addition to the local storage of a Compute, a Storage resource
represents a persistent storage that can be accessed directly by the client or by
the Compute resources in the Cloud system. It may have different statuses:
backup, snapshot, resizing, online, degraded, and offline.

In addition, OCCI brings the possibility to define links between types:

• NetworkInterface: defines network link. Our research considers it to define
links between computing resources.

• StorageLink: defines a link between a Compute resource and a storage type.

6.3 Risk Management

This thesis considers risk as the effect of uncertainty on objectives [64]. Risk depends
on two facets: the probability of an unwanted event and its impact in the deviation
of the desired outcomes. Given a time frame, an unwanted event may occur. This
may impact or not in the desired outcomes. For example, if a single disk fails within
a storage system with redundancy, an unwanted event occurred but its impact is
low (cost of replacement, but no data has been loss). The frequency that a threat

102

agent will come into contact with an asset may be random, regular (threat happen
as consequence of regular actions, such as regular batch activities that increase the
load of a system) or intentional (security threats may motivate hackers to attack
the system).

In our work, the impact of risk will be economically determined by the penalties
that are specified in the SLA. Calculating the risk is calculating the PoF of a complex
system, and calculating how the failure can impact the fulfilment of the SLA.

6.3.1 Measuring risk in Cloud components

For each component based on OCCI types, we identify as failure each incident that
causes this component not to work correctly. Although real computing resources
may have multiple degrees of malfunction, our model adopts a binary definition of
malfunction for single resources: working/failure. The explanation for this is that
our model does not care about the grade of performance for each individual compo-
nent, but whether the propagation and aggregation of all the errors/misbehaviours
of the individual resources will lead the system to fulfil the SLA or not.

The quantitative risk assessment for each component is based on the process
proposed by Guitart et al. [48], which divides the risk assessment into the following
stages:

1. Vulnerability identification. Identify what weaknesses could prevent a
component from functioning properly. In this work we identify two: overload
of resources and age of resources.

2. Threat identification. Identify which situations can exploit system vulner-
abilities. Information from vulnerabilities and threats can be gathered from
experts, historical databases and files.

3. Data Monitoring. The monitoring information is retrieved at different levels.
We basically consider information from physical and virtual hosts.

4. Risk Event analysis. Identify the likelihood of a threat acting over a vul-
nerability. This information is retrieved from historical facts that take place
in a specific context.

5. Quantitative risk analysis. Calculate the PoF of a single component as a
function of the current monitoring status, given a time frame (e.g. calculate
the PoF of a network during the next 24 hours). In this work, we use statistical
information from monitoring history.

6.3.2 Measuring risk in complex appliances

The OCCI protocol allows a Cloud user to manage several instances of Cloud re-
sources (storage, network, and compute). Since a number of instances often work
together as a complex system, OCCI also allows specifying links between them. The
consequence is that the risk from one resource may be propagated to other resources
that are linked. For example, the risk from a storage node will be propagated to

103

the compute node that uses it. The risk will be propagated to a less extent if the
system provides redundancy.

Our risk model is composed by risk nodes that have dependencies between them.
A node nx is failing when it is not providing the agreed services (e.g. a disk is not
able to read or write data, a compute resource is not providing all the promised
computation power, a network fails...). The PoF of nx is notated as P (nx).

Let nx and ny be two nodes that are linked to work together as a composite
system. We consider that nx has a risk link of weight ωxy to ny when the failure of
ny prevents nx to work correctly (for example, nx is an application server that uses
ny as a database). The weight ωxy ∈ [0, 1] is the probability that a failure in ny is
propagated to nx. In consequence, nx can fail because an internal failure on nx or
a failure in ny that is propagated to nx with probability ωxy. Equation 6.1 defines
P ′(nx) as the propagated probability of failure of nx.

P ′(nx) = P (nx) + ωxyP (ny)− ωxyP (nx)P (ny) (6.1)

Equation 6.1 is based on the formula for union of probabilities P (nx∪ny) =
P (nx)+P (ny)−P (nx)P (ny), which assumes that P (nx) and P (ny) are independent
(unlike P ′(nx) that depends on both P (nx) and P (ny)).

The graphical notation for a risk link between two nodes is the next:

nx ny
ωxy

The aforementioned notation is used as a primitive for calculating the risk of
complex systems. For example, let ws be a web server that handles requests from
clients and contacts the application server as. We measured that the 30% of the
times that as is invoked it accesses a database (db). If the database fails, the error
will be propagated to as and, in consequence, to ws. In this example we assume
P (ws) = 0.05, P (as) = 0.01, and P (db) = 0.03.

ws as db
0.3

If the arrow between nodes does not show any number, we assume a weight value
= 1 between risk nodes. From the client side, if the services at ws fail, the complete
web application is failing. The PoF of the complete supersystem is P ′(ws), which
is calculated as: {

P ′(ws) = P (ws) + P ′(as)− P (ws)P ′(as)

P ′(as) = P (as) + 0.3P (db)− 0.3P (as)P (db)
(6.2)

Resolving Equation 6.2, the probability that the complete system fails (this is,
the client cannot access ws) is ∼ 0.068. It is always true that P ′(nx) ≥ P (nx).

In the previous example, the probability of failure of node as that will be propa-
gated to ws is actually the probability of failure of the subsystem formed by as and
db. For that reason, Equation 6.2 calculates P ′(ws) as a function of P ′(as) instead
of P (as). Our model allows to simplify complex systems by grouping many of their
nodes and treat them as a single node.

104

In our model, a node can also have risk dependencies to many other nodes. We
introduce two types of virtual nodes to represent unions and intersections between
risk probabilities.

The next system must be interpreted as follows: the system headed by nx will
fail when there is a failure in nx OR there is a failure in ny (with probability wxy)
OR there is a failure in nz (with probability wxz).

nx
ny

nz
∪

ωxy

ωxz

The node labeled as ‘∪’ (union operator) is a virtual node to which P (∪) = 0.
It is used to allow grouping the subsystem formed by ny and nz and treating it as
a single node when calculating the risk propagation to nx (calculated in P ′(∪)). In
consequence, calculating P ′(nx) is solving the following equations:{

P ′(nx) = P (nx) + P ′(∪)− P (nx)P
′(∪)

P ′(∪) = ωxyP (ny) + ωxzP (nz)− ωxyP (ny)ωxzP (nz)
(6.3)

As example, imagine nx is a VM that executes a disk-intensive task against a
RAID-0 disk system which distributes the data chunks within two disks (ny and nz)
for improving performance. If only one disk fails in a RAID-0 system, the complete
system will fail, since there is no redundancy for recovering the data. Being a disk
intensive task, we can assume that wxy = wxz = 1. If, for example, the probability of
failure of a single disk for a given period of time is 0.05, we conclude that according
to Equation 6.3 the RAID-0 system will fail with a probability of P ′(∪) = 0.0975.

Our model also introduces the intersection operator ‘∩’ to model redundancy in
fault tolerant systems:

nx
ny

nz
∩

ωxy

ωxz

The probability of failure of the subsystem headed by the node ‘∩’ is the in-
tersection of probabilities of failure for nodes ny and nz, assuming that they are
independent: P ′(∩) = ωxyωxzP (ny)P (nz).

For example, imagine a RAID-1 disk system that mirrors two disks to which
probability of failure is 0.05 and weights 1 for each risk node. The probability of
failure of the RAID-1 disk system would be: P ′(∩) = 0.0025.

The combination of the union and intersection operators may also be used to
model systems to which the redundancy is partial. For example, a master node M
sends tasks to slave nodes A, B, and C. If one of the slave nodes fails, the other two
nodes can handle the work; if two slave nodes fail, the complete system will fail. The
probability of failure of the complete system can be determined and simplified by
means of the basic probability laws (for simplicity, we assume all the weight values
are equal to 1):{

P ′(slaves) = P (A ∩B) + P (A ∩ C) + P (B ∩ C)− 2P (A ∩B ∩ C)

P ′(M) = P (M) + P ′(slaves)− P (M) + P ′(slaves)

105

M Slaves

6.3.3 Minimizing risk in Cloud systems

There are scenarios where a Cloud provider may require to minimise the risk in the
system. For example, a client that needs high availability would negotiate SLAs
with a high penalty for the provider in case of SLA violation. In such scenario, the
Cloud provider may minimise the risks according to two complementary strategies:

• For each node nx, minimizing the probability of failure P (nx) that is caused
by risk in the node (not propagated). This thesis considers two factors that
influence in P (nx): hardware lifetime and workload [65]. The failure rate of
hardware resources is high both at the beginning and the end of the com-
ponents lifetime. There is also direct correlation between the workload and
the failure rate, being higher during peak hours and lower during off-peak
hours. We use statistical analysis based on historical data to calculate P (nx),
although other Machine Learning methods may be suitable for calculating it.

• For each node nx, minimizing the propagated probability of failure P ′(nx) that
is caused by risks in the nodes to which nx has dependencies. As shown pre-
viously, analysing risk graphs and providing cloud resources with redundancy
would noticeably reduce the risk.

Analysing the risk propagation graphs is itself a large research field that would
require to deep within the research of machine learning and pattern recognition
algorithms, and how to apply them to this problem. The aim of this thesis is to
keep the focus in the risk and revenue model. We simplify the graph analysis by
experimenting only with one template of application. The graph analysis has been
done offline and the risk minimization policies always apply the same action with
the graph: to add redundancy to the nodes whose failures would entail a failure to
the rest of the application.

Both strategies for minimizing risk would entail an increment in the cost of opera-
tion. Next section describes a model for the management of the revenue during both
SLA negotiation and operation that would allow providers providing differentiated
risk levels consistently according to its business objectives.

6.4 Revenue Modeling

Our work uses Equation 6.4 to establish the price of a set of Cloud resources, given a
time frame. MR is the price for a service (Maximum Revenue, as previously defined
in Equation 2.1).

MR = RP +DO +BV (6.4)

In Equation 6.4, RP is the Reservation Price: the minimum price the provider
can sell a resource without losing money. DO and BV are subjective terms that

106

may depend on several conditions. DO is the demand/offer overprice (quantified by
dynamic pricing policies as described in Chapters 3 and 4): a client may be willing
to pay more when there is more demand than offer. DO will tend to 0 when the
demand is much lower than the offer. BV is the Business Value: the amount of
money a client is willing to pay for an extra unit of QoS.

Our model calculates RP as the cost of amortization of all the resources that a
service will use during a given period: the more amortized is a resource the lower
is RP . Equation 6.5 shows how to calculate the amortization cost of a single Cloud
resource that is allocated within a physical resource. The RP for a service is the
addition of the amortization costs for all its resources.

CostAm = (TCO − Amortisation)
Duration

(LTtotal − LTnow)H
ρ (6.5)

TCO is the Total Cost of Ownership, the cost of the initial investment plus
the common expenses in electricity and maintenance during the whole lifetime of a
resource. Amortisation is the sum of all the income associated to the provisioning
of Cloud services or resources for the given physical resource. Duration is the time
that the client is willing to use the resource, according to the SLA terms. LTtotal is
the Life Time that is planned for a group of resources: the time since it is provisioned
until it is disengaged from the data center. LTnow is the Life Time since a resource
is provisioned until now. Finally ρ = [0, 1] is a density function that indicates the
percentage of a group of resources to which the cost is being calculated. For example,
to calculate the amortisation cost of a virtual machine, ρ is the percentage of the
group of physical resources that is occupied by the virtual machine. Finally, H is
the percentage of usage of the resources as envisioned by the provider to this time.
If H = 1, the provider would consider that all the resources are at full occupation
during this time. If the resources are underutilised during the off-peaks, the value
H would proportionally increase the reservation price that is needed for actually
amortizing completely a resource at the end of its lifetime.

To avoid inequalities in the amortisation of individual resources with the same
age, for accounting purposes we group all resources from the same type and age into
an accounting group. Then the values TCO, Amortisation, ρ and LT apply to the
total of resources instead of individual ones.

Equation 6.5 differs from the traditional way to calculate the amortisation cost,
TCO/LTtotal, because this formula assumes full load and does not consider how the
value of a resource decreases over time.

Calculating BV is difficult because it may rely on several hidden variables that
depend on the client, the market status, the reputation of the provider, etc. In-
stead of trying to synthesise them in a mathematical formula, Machine Learning
techniques can allow providers estimating this value. Chapter 4 demonstrated the
validity of Genetic Algorithms for establishing prices under changing environments
where variables are partially unknown. Since this part is outside of the scope of the
research in this chapter, we apply a fixed overprice for the SLAs in our experiments,
according to their level of QoS and Risk to ease the quantification of the research
results and remove the noise added by the instability of genetic algorithms.

We account DO and BV within the total of amortised cost, which are overprices
that accelerate the amortisation of the resource and make CostAm value to decrease

107

fe as2

as1

asn

db

Figure 6.1: Basic architecture of a web application

over time. That will allow the provider using different prices depending on the age
of the resources that are being sold.

6.5 Evaluation

In our experiments, we used our Cloud Market simulator (available online [37]) to
simulate 36 months of a Cloud provider that initially owns 50 hosts with 16 CPUs
each one. The number of deployed services initially oscillate between 5 and 60
services/hour, according to a web workload taken from a real web application (which
follows the same pattern as the workload used in previous chapters, see Figure 2.1).
To simulate the consolidation of the business of the provider, the average number
of services is linearly increased until it doubles its initial number at the end of the
simulation, but following the same web pattern. Because of the increase of the
number of services, the Cloud provider doubles its number of resources at month
18. From the point of view of Equation 6.5, there is initially an accounting group
of resources and at the end of the simulation there are two accounting groups: the
initial bunch of resources, and the new resources that were introduced at month 18.

The clients can deploy several types of application. In our experiments, the
clients deploy web applications according to the structure in Figure 6.1: a web
front-end (fe) balances the job across a set of n application servers (as1, . . . , asn)
that use a database node (db) as persistence layer. The number of application
servers vary from 2 to 4. The number of CPUs of each node follows a folded normal
distribution [62] with both minimum value and variance equal to 1. The same
distribution is used to determine the duration of the deployments, with minimum
value and variance of 1 hour.

The allocation process of the SLA is the same as described in Section 6.2. The
IP considers three different SLA allocation strategies, which offer three levels of risk
for the SLA, from medium to lowest risk:

• Cost Minimisation (CMin). The provider prioritises the allocation of VMs
in the hosts given two equally-weighted criteria: high consolidation, to save
energy costs in hosts that are already running tasks and keep switched off those
hosts that are idle [48]; and amortisation, to allow lower prices according to the
model in Equations 6.4 and 6.5. Because of high consolidation and resources
age, SLAs allocated according this policy have the higher risk.

• Node Risk Minimisation (NRMin). The provider prioritises the allocation
of VMs in the hosts according to two equally-weighted criteria: low consoli-

108

Figure 6.2: Probability of Failure of resources over time

CMin NMin GRMin
MP -MR -1.5MR -2MR

MRT 0.15∆t 0.1∆t 0.05∆t
MPT 0.75∆t 0.5∆t 0.3∆t

Table 6.1: Revenue function values for each group of SLAs (Equation 2.1)

dation, to lower the risks derived from overload in resources that would entail
to not provide the agreed QoS; and resource age, trying to avoid the resources
that are new and those resources that are near the end of their lifetime [65].
Figure 6.2 shows the PoF distribution according to the age of the resource.

• Graph Risk Minimisation (GRMin). The provider applies Node Risk min-
imisation but, in addition, it analyses the OCCI links to try to detect single
point of failures. Given the model in Section 6.3.2, the provider would de-
tect that a failure in the database node would entail a failure in the whole
application, so it decides to replicate it.

The SP selects the type of risk minimisation strategy as a function of the risk
needs of its application. When the IP calculates the price, it applies a fixed over-
price of 50% to the NRMin SLAs and 100% to the GRMin SLAs. In addition to
the overprice, that determines the MR value of Equation 2.1, the risk level also de-
termines the MP , MPT and MRT values of the same equation to be less tolerant
with violations of low-risk SLAs (see Table 6.1). These fixed values, as well as the
other constants that the simulation relies on, are not intended to reflect real market
data but to evaluate the model in terms of relative results and tendencies.

6.5.1 Evaluating risk minimisation policies

The graphics of this section show weekly average values to make them more clear
and understandable, because hourly or daily averages are highly influenced by the
workload oscillations. The weekly granularity for the values is also accurate enough
because the simulation is long-term enough (36 months) to show clearly the tenden-
cies of the metrics used to evaluate the effectiveness of the policies.

Figure 6.3 shows the behavior of the policies with respect to the age of the
selected resources. In the first half of the experiment all the resources are the same

109

Figure 6.3: Average age of resources for different SLA policies

age. When a new bunch of resources is introduced at month 18 (week 77), the CMin
policy still selects the older resources, which have the highest amortisation rates.
NRMin and GRMin progressively move their workloads to the new resources, after
a short period in which new resources have higher risks than older resources (as
shown in Figure 6.2). As explained before, the number of services linearly increases
over time. At week 115 resources are highly loaded because of the high number of
services, and the provider has less possibility to choose resources for the different
risk levels. This will influence the risk of the SLAs, as shown in Figures 6.4 and 6.5.

Figure 6.4 shows the weekly average PoF of the SLAs, differentiated by the three
different allocation policies (CMin, NRMin and GRMin). While CMin is near to
constant over time, NRMin keeps much lower risk than CMin while is noticeably
influenced by the load of the resources. The PoF for NRMin SLAs increases linearly
over time as the number of services also increases because the possibility to choose
is reduced. When the number of resources is doubled, the PoF of NRMin is reduced
again, while the PoF of CMin is kept constant, because the policy still chooses the
older resources. GRMin SLAs are also sensible to the load of resources because the
allocation policy is the same as NRMin, but the elimination of the single point of
failure makes the system keeping much lower risk rates.

The PoF has a direct impact in the economic penalties as consequence of the
violations of the SLAs. Figure 6.5 shows the strict correlation of economic penalties
with the probability of failure. The economic impact of failures is higher in SLAs
allocated with low-risk policies (NRMin and GRMin), because both the prices and
the penalties are higher for these SLAs (see Table 6.1). Figure 6.5, as well as the
rest of figures with economic information in our evaluation, do not show absolute

110

Figure 6.4: Average PoF for different SLA policies

Figure 6.5: Average violation percentage per SLA

111

Figure 6.6: Average price per CPU hour

economic values, but values divided by CPU hours to facilitate the comparison of
data from services with different size and different time.

6.5.2 Evaluating the modeling of the revenue

Figure 6.6 shows the tendency of the average price per CPU hour for the different
types of SLAs. During the first weeks of the experiments, the price decreases because
the amortisation of the resources increases and, applying the pricing model in Section
6.4, the reservation price is lower. During this period, as shown in Figure 6.7, the
profit (the revenue minus the penalties) for CMin policy increases because the market
allows higher margin for profit.

Figure 6.6 shows that, when the resources are doubled at the half of the experi-
ment, prices increase for risk minimisation policies but not for CMin policy, which
still allocate the services in the older resources. Increasing the price minimally in-
fluences the net profit in risk minimisation policies (Figure 6.7) because the profit
margin keeps similar over time.

Figure 6.7 also shows how penalty slightly influence net profit of risk minimisa-
tion policies, which slightly increase it when the provider adds more resources. How-
ever, the influence of penalties in cost-minimised SLAs can not be visually checked
in the figure, because penalties remain quite stable during the whole simulation.

112

Figure 6.7: Average net profit per CPU hour

6.6 Conclusions

This chapter introduces a model to differentiate SLAs and adapt the provisioning of
resources to multiple profiles of customers. The SLAs are differentiated according to
multiple risk levels that consider two facets: the risk of failure that is inherent to each
of the nodes of a cloud appliance, and the propagated risk of failure, which considers
how a failure in a cloud resource can affect to the resources that are connected to it
in the same appliance.

The risk associated to node and propagated risks is managed to adapt the alloca-
tion and enforcement of the SLAs to multiple profiles of customer, according to their
expected level of risk. We introduce three policies for each of the three risk profiles
that we present in this thesis: cost minimisation (moderate risk), risk minimisation
at individual node level (low risk), and risk minimisation at graph level (very low
risk, which also includes minimisation of risk at node level).

This chapter introduces an accounting model that allows the provider adjust
prices to the risk as a function of the amortisation of the resources. Cost minimisa-
tion policy mainly allocates the SLAs in the resources with the highest amortisation
rates. Node Risk minimisation allocates SLAs in the resources with the lowest rate
of failure, which generally are new resources that have low failure rate (after an
initial time in which the rate of failures is high). Node Risk minimisation policy
involves higher prices because such new resources are not amortised in the same
proportion as older resources. Graph Risk Minimisation policy adds redundancy
to some nodes of the graph, adding an extra overprice to the SLA allocation and
operation process.

The results exposed in this chapter enforce the Hypothesis H4 of this thesis:

113

quantifying the uncertainty and considering its effect over the objectives will improve
the accuracy of the business policies. The results of the experiments shown that
the three policies clearly resulted in differentiated risk levels that could cover the
multiple customer profiles the (Bronze⇒ CMin, Silver⇒ NRMin, Gold⇒ GRMin).
The experimental results shown that the PoF of Silver clients oscillates in the range
of 30%-60% lower than Bronze clients. The PoF of Gold clients is around 85% lower
than Bronze clients. Our model also helps adapting prices to the long-term, allowing
the provider to estimate how much the prices of the resources decay over time, as
long as resources are getting old. This allows pricing SLAs proportionally to their
associated risk and motivates providers offering differentiated QoS levels, because
high QoS increases the margin of profit and helps amortizing quicker the resources.
In our results, a CPU hour of Gold QoS doubles the profit of a Bronze SLA and is
∼30-40% higher than the profit of Silver SLAs.

The research performed in this work area has resulted in the publication of a
paper in an international conference:

• M. Maćıas and J. Guitart, “A Risk-based Model for Service Level Agreement
Differentiation in Cloud Market Providers” Full paper accepted in the 14th
IFIP International Conference on Distributed Applications and Interoperable
Systems (DAIS 2014). Berlin, Germany. June 2014

114

Chapter 7

Related Work

With the rise of Utility Computing as business model thanks to the popularisation
of the Cloud in the last years, Utility Computing Markets and Business-Driven
Resource Allocation and Management gained interest in the research community.
This section enumerates the related work from other authors and how it is related
with the work performed in this thesis.

As this chapter shows, there is a large body of related work for all the research
topics of this thesis. The main values of this thesis are two: first, this thesis provide a
step forward to the state of the art in all the research topics; second, we do not work
with isolated models and policies but we combine them into a unified framework.
This thesis defines building blocks that can be used by higher-level policies that run
combined to achieve a set of user-defined Business-Level Objectives. Because we are
not aware of any similar approach, this thesis claims the complete framework that
it introduces as its most original contribution.

7.1 Market-oriented Utility Computing

Market-oriented Utility Computing paradigm has been addressed in previous Ph.D.
theses. Anthony Sulistio [66] proposes an Advance Reservation system to allow users
to secure and guarantee resources prior to executing their jobs. His thesis investi-
gates how to increase resource occupation and, in consequence, revenue. He also
considers Resource Management as a tool to determine the pricing of the reserva-
tions, increase the revenue and regulate the supply and demand. This thesis is a
step forward because it considers additional BLOs (client classification, QoS level,
trust, risk), and how they relate with revenue in the short and long term.

This thesis faces Market-oriented Cloud computing from a microeconomic point
of view. Our research is about how individual agents and organisations maximise
their utility within a given market environment. Xavier León [67] focus on the
macroeconomic aspects of market regulations: he points out the need to address
economic externalities like load balancing or energy-efficiency, by means of taxation
mechanisms and incentive-compatibility models that encourage users to report their
true requirements to effectively assess providers to allocate their resources.

A number of industrial vendors are developing techniques for exposing resources
to clients and charging for usage. The most representative examples are Microsoft
with its Windows Azure [7] Cloud platform, and Amazon with the Elastic Com-

115

puter Cloud (EC2) and S3 services [6]. Both approaches have evolved from the
respective data centres as a way of managing storage and computational resources,
while at the same time allowing third parties to ’hire’ resources during periods when
the data centres are under utilised. The main difference between these approaches
and the market-oriented models of this thesis is that current commercial clouds do
not include third-party mechanisms such as SLA Enforcement, Market Information
Systems, or reputation models. Market-oriented Cloud computing shifts the focus
from individual data centres to an open market environment, where diverse resource
providers compete for consumers.

Our market model fits well with the proposals for Cloud Federation architectures
from the related literature [68, 69]. They assume the existence of Cloud Brokers that
would allow clients to deploy their tasks and services within the different providers
that share the market. The Cloud Federation Brokers would implement the negoti-
ation protocols and models, while the SLA Enforcement would be performed within
the Infrastructure management layers.

There are some research projects related with the market allocation paradigm
applied to Utility Computing. Most of them focus on Grid computing [21], which
in some aspects could be seen as a predecessor paradigm of the Cloud.

Fingrid [70] is a German consortium that studied the feasibility of applying
Grid computing to business. They evaluated the market and compiled empirical
recommendations to investigate service-oriented Grid cases. They evaluate different
types of pricing mechanisms that seem to be applicable for the financial service Grid.
The most promising pricing mechanisms are then implemented in a prototype. It
is calculated the willingness to pay for different Grid services and determined an
optimal tariff structure. Other of their objectives is to discuss how a financial
on-demand Grid should utilise both unused resources within a department as well
as allow the spontaneous discovery and use of computational resources in other
departments or even other organisations. Other task is to investigate the issues
involved for providing support for service level agreements in financial applications.
The challenges to be addressed are to leverage on the work on monitoring and
managing infrastructure in order to enable an SLA management framework that can
use this information, thereby enabling an autonomous SLA management framework.

GridEcon [8] is an European Community-funded project that offers market place
technology to allow many small providers to offers their resources for sale. It de-
signs the technology that is needed to create an efficient market place for trading
commoditised computing resources as standardised Virtual Machines (VM). The
market mechanism used has been designed to be simple for participants and also
economically sound. The later is concerned with inducing the right economic incen-
tives to participants and avoiding unwanted strategic behaviour leading to market
dominance with large players. The GridEcon project also designs a series of value-
added services on top of the market place (e.g. insurance against resource failures,
capacity planning, resource quality assurance, etc...), ensuring quality of the traded
goods for Grid users.

The Catnets project [71] proposes a market-based approach based on the Catal-
laxy concept [72]: a market order without planned ends, characterised by the sponta-
neous order which emerges when individuals pursue their own ends within a frame-
work set by law and tradition. The function of government is to maintain the rule

116

of law which guarantees fair and equal procedures, but is neutral as to goals. The
advantage of Callaxy is that does not need to support for centralised brokers: it uses
a “free market” self-organisation approach, which enables prices within the market
to be adjusted based on particular demands being placed on particular scarce ser-
vices. To implement this decentralised and highly chaotic market, Catnets adopts
a P2P approach, which allows establishing a symmetric interaction between peers,
and allocate dynamically the communication paths depending on the changes in the
network topology.

The Self-organising ICT Resource Management (SORMA) [5] is an EU IST [73]
funded project aimed at developing methods and tools for efficient market-based
allocation of resources, using a self-organising resource management system and
market-driven models, supported by extensions to existing grid infrastructure. Top-
ics addressed include Open Grid Markets, economically-driven middleware, and in-
telligent support tools. Jobs submitted to SORMA are matched with available
resources according to the economic preferences of both resource providers and con-
sumers, and the current market conditions. This means that the classic grid job
scheduler, which is based on performance rules, is replaced by a set of self-organising,
market-aware agents that negotiate Service Level Agreements (SLAs), to determine
the ‘best’ resource allocation to fulfil both performance and business goals. The
background knowledge that this thesis relies on (including the EERM component)
is the result of the participation of the author within this project.

The Mandi [9] Market Exchange facilitates the trading between consumers and
Cloud providers. Such market environment eases the trading process by aggregating
IT services from a variety of sources and allows consumers to select them. Mandi
promises flexibility in terms of negotiation protocol.

7.2 BLO-Driven SLA negotiation

Howard Raiffa established and compiled the mathematical basis of the negotiation
models in his book The Art and Science of Negotiation [28]. This book classifies the
different negotiation models in base to the characteristics of the environment and
the negotiated goods. Faratin et al. [29] applied and extended some existing models
for service-oriented decision functions in bilateral negotiations between autonomous
agents. Since computing services are qualitative in nature rather than quantitative,
Faratin adds qualitative values and associates fuzzy sets to its model [74] in order
to express better the quality in the negotiations.

Once the agents have determined the set of variables over which they will nego-
tiate, the negotiation process between two agents consists of an alternate succession
of offers and counter offers of values for the x, until an offer or counter offer is ac-
cepted by the other side or one of the parties terminates the negotiation. Faratin et
al. demonstrated what this thesis affirms: negotiation tactics must be responsive to
changes in the environment.

By some experimental simulations, they proved that agents negotiating use their
model were guaranteed to converge on a solution in a number of well defined sit-
uations and, with respect to tactics, they also discovered that: (i) irrespective of
short of long term deadlines it is best to be a linear type tactic, otherwise and im-
itative tactic; (ii) tactics must be responsive to changes in their environment; and

117

(iii) there is a trade-off between the number of deals made and the utility gained
which is regulated by the initial offers.

The work in this thesis extends the model of Faratin with information acquired
from the resources and used in the negotiation, and by considering other economic
factors, such as reputation or risk. The other main difference is that the work of
Faratin was limited to a concrete scenario: client and provider brokers meet to
negotiate for a concrete type of resource. The work in this thesis must consider the
service discovery (that is, a market place) and the fact that agents can negotiate for
a huge range of services.

Ouelhadj et al. [75] introduce a protocol for robust scheduling in Grid Computing
based in the Contract Net Protocol [76]. The described architecture is similar to
the current Cloud Market systems, but it has the particularity that the SLAs are
negotiated at two levels: (1) Meta-SLA, which contains high-level description of
jobs (performance, bandwidth, response time...); and (2) Sub-SLA, which contains
information about processors, memory, disk, etc. Another interesting feature in
the work of Ouelhadj et al. is the possibility of a re-negotiation of the SLAs. Re-
negotiation is useful when considering some uncertainties: presence of high-priority
jobs, changes in the QoS requirements, resource failures, etc.

This thesis gets some ideas from the Meta-SLAs of Ouelhadj’s work and from
WS-Agreement [77]: SLA negotiations between client and provider brokers are per-
formed by using high-level QoS metrics. In a lower level, an Economically Enhanced
Resource Manager helps in the negotiation of the SLAs by decomposing the high-
level SLOs into low-level metrics, to calculate if a particular service can fit in the
resources, given their status.

Vulkan et al. [78] evaluate the efficiency of English Auctions in the negotiation
for services in multi-agent environments. Like in this thesis, they assume that the
negotiations are initiated by the client. In addition, they introduce a pre-auction
protocol for allowing the provider to initiate an auction when the client does not
do. The winner of this auction is offered to the client as “take it or leave it”.
The difference with this thesis is that they use an English Auction instead of a
direct negotiation and the presence of pre-auction protocols. Like in this thesis,
they represent the negotiation terms with a price and a set of SLOs; this thesis, in
addition, considers other information such as Client Information, reputation, penalty
information, or level of Quality of Service.

Xu et al.[79] introduced, subsequent to our work, a model for revenue maximiza-
tion with some features that are common to ours. They model the optimal pricing
by considering the usage and the status of the resources.

7.3 BLO-Driven SLA management

There is a large body of work that considers Business-driven Resource Management.
Yeo et al. [80] propose a model for market-based cluster computer with some ele-
ments common to EERM. The cluster nodes are connected to a central manager
which incorporates other sub-components for performing pricing, job scheduling,
monitoring, and dispatching. The main difference from our EERM is that EERM is
focused on resource management, so it does not implement some functions such as
billing, or identity provisioning. Freedman et al. [81] focus on Peer-to-Peer (P2P)

118

content distribution by identifying explicitly highly demanded files and rewarding
most peers that share highly demanded content. They use a market-based mech-
anism for allocating network resources across multiple files and play with the Law
of Offer and Demand to motivate providers to sell most scarce high-value resources
(only files, but not CPUs or memory). Their system is also designed so that the
client chooses files consistent with its best interests, because it seeks to download at
the current minimum price. This thesis extends these policies for general purpose
computing.

Amazon Spot Instances [82] prices in function of the market status. Clients
specify the maximum price they are willing to pay for an instance. The price of the
spot instances fluctuates in function of the offer and demand. When the spot price
is lower than the bid price, the instance is executed until the spot price is higher
again. This paradigm would motivate clients to move their batch workloads to off-
peak hours where the demand is low. However it is not suitable for Web Services
that have real-time requirements during peak hours.

Pueschel and Neumann [83] use the concept of an EERM for optimizing the
revenue of a Cloud manager. They apply policies as a heuristic and demonstrate
their achievements on revenue maximisation or client classification when applying
economic enhancements. This thesis intends to be a step forward in the usage of
policies. It enables procedural policies that guide the actions of EERM under certain
conditions to get the best solution to given problems. This thesis shows an upgrade
of EERM that adds more policies, and performs a more intensive evaluation of their
validity. Püschel et al. [13] also propose a scheme for Client Classification by means
of price discrimination, different priorities in job acceptance and differentiation in
QoS. They adopt the architecture of an EERM. The EERM supports the optimi-
sation of SLA Negotiation and Management by dealing with both economic and
technical information of Cloud Computing markets. In addition, this thesis extends
the research of Püschel et al. in Client Classification with the extension and detail
of the policies, and deeper validation of them by means of a tailored simulation of
clients, Cloud market, EERM, and resource fabrics.

Aiber et al. [84] introduce an autonomic computing approach to business-driven
self-optimisation of service providers. First, a particular scenario is modeled from
both business and IT points of view, and the impact of IT on business and vice
versa is studied. Next, business rules for continuous optimisation of IT resources
and business are defined for maximizing the business utility of the IT resources and
maximise the return of investment of the infrastructures. We use a similar approach
that differentiates business and IT layers and uses an EERM between them. The
EERM contains rules for dealing with IT and business relations and maximizing the
business utility of the infrastructure.

There is some relevant work in rule-based resource management for distributed
environments. Collaborative Awareness Management [85] promotes cooperation be-
tween resources for their optimisation by means of a set of rules. Schiefer et al. [86]
introduced a business rules management system that is able to sense and evaluate
events to respond to changes in a business environment or customer needs. We
extend these approaches by combining high-level service and business data with the
low-level resource information, enforcing the flow of information between the two
layers for their mutual optimisation. Weng et al. [87] propose an autonomic man-

119

agement system of VMs that relies on policies. Their system is mainly oriented to
guarantee the QoS of a pool of VMs by dynamically scaling the assignments of CPUs
to each VM. Our thesis extends this approach by adding other reactive actions, such
as migration of resources or cancellation of tasks, and is not limited to guarantee
QoS but also business metrics.

Other related work introduced some policies, which are similar to the policies
introduced in this thesis. Sulistio et al. [88] proposed overbooking strategies for
mitigating the effects of cancellations and no-shows for increasing the revenue. The
overbooking policies implemented in this thesis, in addition, considers the possibility
of under-usage of the reserved resources from the client. Dube et al. [89] establishes
different ranges of prices for the same resource and analyze an optimisation model for
a small number of price classes. Their proposal is similar to the proposal of this thesis
of establishing Gold, Silver and Bronze ranges and optimizing their QoS performance
giving priority to the contracts that report the highest economic profit. This thesis
extends this work by combining the QoS ranges with several other policies, such as
pricing or selective violation.

Menasce et al. [90] demonstrated the importance of managing the resources tak-
ing into account the BLOs. They maximise the revenue of e-Commerce servers
by dynamically calculating Customer Behaviour Model Graphs and prioritizing the
workloads of the users that are willing to spend more money. Poggi et al. [20]
introduce a similar approach, in which QoS for user sessions is shaped based on
the commercial intention of the users. However, these models are not applicable
to the scenario of this thesis, because the Cloud provider supports more generic
types of workloads, not restricted to online shops, and does not interact with hu-
man customers, but with other client machines that automatically buy resources in
a market.

Client Classification is a usual practice in many businesses, such as banking ser-
vices [91]. These businesses categorise clients according to their size, budget, etc.
and establish policies that define clearly the priorities of the clients, their protec-
tion level, their assigned resources, QoS, etc. In Cloud Computing, Amazon EC2
provides a set of predefined VM instances [6], each one with different performance
profiles (CPU load, memory, etc.), but a fixed QoS: they claim that their machines
have an annual availability of 99.5%. With this paradigm, providers tend to over-
provision resources for minimizing risks and provide high availability, which is not
economically suitable for small providers. We try to channel the risk to the SLAs
with the lowest priority according to the defined BLOs. In case of SLA violation,
the clients will receive an economic compensation proportional to the seriousness of
the violation.

Freitas et al. [92] introduces a similar approach to our EERM that was presented
later. They consider a framework that negotiates and manages the SLAs taking into
account prices, fines and infrastructure costs. They also classify SLA in three levels
(Silver, Gold and Platinum).

7.4 Adaptive pricing policies

Computer models have been demonstrated more efficient than humans when making
decisions [93] in many market scenarios, especially when a high volume of data must

120

be considered.
Genetic Algorithms are a widely used tool for the analysis of financial markets

due to their simplicity and capacity of adaptation to chaotic environments [94, 53].
However, the major usage of Genetic Algorithms is the forecasting. Forecasting is
a valuable tool for the sales of futures in Cloud Computing, for example batch jobs
whose sales can be negotiated some days before their execution. However, values of
future predictions are not so useful when selling Web Services, whose negotiation
and execution must be performed in real time according to some existing Utility
Computing markets [95]. Our work intends to adapt pricing models to Web Services
sales in Cloud Computing.

Cliff [96] explored a continuous space of auction mechanisms via Genetic Algo-
rithms, with artificial trading agents operating in evolved markets. His work does
not rely on the modelling of market agents but in the market itself, by using Genetic
Algorithms to tune market dynamics. It is important to emphasise that agents and
market are more stable against market shocks, by evolving to suitable behaviours.

Fayek et al. [97] propose the usage of Genetic Algorithms for evaluating the
validity of a set of offers by calculating their utility. Its application of Genetic
Algorithms when modelling the behaviour of agents is worth considering. This work
intends to be a step forward, by adding pricing models to the behaviour of the
agents.

Chidambaran et al. [98] study the effectiveness of Genetic Algorithms in Option
Pricings, but our scenario is not strictly an Option Sales Scenario [99]. Their solution
is based in the Black-Scholes algorithm [100], in which the input is not necessarily
available in Cloud Computing markets (e.g. stock prices, risk-free rates, volatility,
etc). The Genetic Model proposed in this thesis works with any available set of
parameters that could influence in the price of Service.

Qin et al. [101] provided, subsequent to our work, a genetic model for pricing
Cloud services. The main difference is that our model basically relies on a generic
pricing function while they decompose the pricing process in more steps: modelling
a demand function to predict it, determining the parameters that the model will
consider, pricing, and re-adjust the parameters. Their model behaves well in stable
markets, but not in turbulent markets, because if the market changes, the initial
demand function must be modelled again.

7.5 Risk Management

Bayesian networks [102] define a graph model for describing the probability of an
event from the probabilities of the events that would cause it, in terms like “if
event A happen, event B will happen”. That is inaccurate for Cloud appliances,
because a failure in a node would not always involve a failure in the linked node.
In addition, it is difficult to express some complex relations like redundancy. Our
graph model extends the Bayesian Network model with the addition of weighted
links and introduces two special types of node for representing union and intersection
operations. These additions ease the expression of some complex Cloud appliances
and the risk propagation through their nodes.

Djemame et al. [103] described an architecture to assess risk in computing Grids
that allow providers to estimate the risk of agreeing a given SLA and use man-

121

agement techniques to maximise its fulfilment. They use risk assessment for task
scheduling. Our work intends to be an upgrade of some of their risk models to adapt
them to the architecture of Clouds and using such risk assessment also for improving
business objectives.

Michalk et al. [104, 105] described a model to enable a service provider to choose
either a risk-minimal SLA portfolio that satisfies a minimal profit constraint or an
SLA portfolio that maximizes utility as a tradeoff between risk and profit. Their
proposal is assuming few or no variation in the prices, while we are assuming that
clients with critical risk requirements are willing to pay extra budget for their SLAs.

Yeo and Buyya [106] provide two methods for risk analysis: separate, which only
evaluates the risk over a facet, and integrated, which evaluates the risk over multiple
facets. In the integrated method, they assume all the facets are independent from
each other. In our model, the facets are the multiple risks of all the independent
resources in a multi-tier application, but we do not consider them as independent.
The risk is propagated according how such resources are linked, and the effect of
such uncertainty has different impact depending on the location of the risk within
the resources graph.

Cho et al. [107] use event trees to evaluate risk in systems. We use a similar
approach but using graphs that fit better with the description of the topology of a
Cloud appliance.

Sawade et al. [108] consider that risk models may lose their validity over time
for some reasons (the environment changes, the inputs change, learning errors...).
Our model can minimise these drawbacks, because it is dynamically built according
to the SLA templates from the clients.

The pricing models from Becker et al. [109] consider the concept of Business
Value: how much a client is willing to pay for any extra unity of QoS. We also
consider this concept in our model. However, our intention is not to solve the issue
of calculating it but consider it as an important part of a revenue model for providing
multiple pricing and risk levels. They also calculate the penalty of the execution
of multiple services, while distributing the risk between the different services. Our
approach considers only a single project and calculates the risk of penalties by
evaluating the internal topology of such service.

Wee [82] profiles in detail the Amazon Spot Instances. He concludes that such
model does not motivate enough users to move their workload to the off-peak hours.
Our model provides an extra incentive to move because, in addition to the lower
prices derived from the low market demand, users can benefit also of lower risks
derived from the low workload.

Li and Gillam [110] apply risk assessment to the financial aspect of the grid.
They provide node granularity risk assessment to calculate prices and penalties for
the SLAs. Our approach combines assessments from several nodes and links them
to consider a Cloud appliance topology.

Freitas et al. [111] integrate the SLA specification and enforcement for clouds.
They allow creating SLA templates that combine performance and fault-tolerance,
as well as a billing model. They also design mechanisms to dynamically assure QoS.
Their approach could coexist with ours, since their work is focused mainly on batch
jobs that can be performed in background and are easily scalable, while ours is
focused on real time appliances that may be composed by heterogeneous VMs.

122

Our work minimizes risk during the service composition stage. It can coexist
with the work performed by Guitart et al. [48], which implemented a proactive risk
management framework during the service execution. In their work, a risk assessor
is continuously monitoring the resources and, when it detects that the resources are
failing (or predicts that they would fail during a time window), contacts a central
Cloud manager that would trigger reactive actions to avoid the failure: restarting,
redeploying or migrating VMs.

7.6 Trust and reputation

Our background work [49] shows the importance of the reputation for a provider. To
maintain a high reputation is a key factor for maximizing the revenue of providers in
Utility Computing Markets. We introduced a centralised proof-of-concept reputa-
tion architecture that relied in simple reputation models and ideal market conditions.
This thesis intends to be a step beyond: we add multiple reputation terms and a
decentralised architecture that is robust to dishonest market actors.

Our work adopts some ideas from Azzedin et al. [112] and Alnemr et al. [113]:
we differentiate between direct and reputation trusts; we consider multiple provider
facets to evaluate our trust methods; we also consider the trust factor to a recom-
mender. Despite Azzedin et al. provide a reputation model, they do not detail how
that would be implemented. This thesis provides a pure mathematical model that
is easily implementable for its computation. We detail and discuss some practical
issues for implementing it in real platforms.

Rana et al. [114] monitor reputation from three points of view: Trusted Third
Party, Trusted Module at Service Provider, and Model at Client Site. They intro-
duce the figure of a trusted mediator to solve conflicts between parties. Our main
objection is the difficulty to find some company or institution that is willing to host
and maintain the trusted mediator, because the business model is not clear. In
consequence, this thesis suggests a purely P2P reputation mechanism.

This thesis adopts various facets from the model of Xiong et al. [115] for ensuring
the credibility of a feedback from a peer: number of transactions and transaction
context. We agree with the necessity of a community-context factor to motivate
peers for reporting true feedbacks. Our work differs from the work of Xiong et al.
because we are focusing the particularities of current Cloud Computing markets:
multiple SLOs, providers that are not integrated with the reputation system, and
trust relations that are classified two types: trust on peers (for consultancy) and
trust on providers (for commercial exchange).

Yu et al. [116] define a model in which reputation propagates through networks.
They define a trust propagation operator that defines how trust propagates from a
source peer (who reports the trust) to a destination peer in multiple steps. Unlike
our thesis, their model assumes the same trust both for service provision and trust
report, and they do not update the trust on peers as a function of the honesty of
their reports.

The need to avoid dishonest opinions in reputation systems is firstly raised by
Kerr et al. [56]. In their work, the show several reputation attacks to allow dishonest
peers to increase their revenue. They argue that the notion of ‘security by obscurity’
does not prevent attackers from cheating successfully. Our work shows a method

123

for protecting honest clients from dishonest peers that is complementary to other
existing security mechanisms.

Our thesis discusses the need to motivate users to report true validations about
the QoS of the providers. There are many proposals to motivate users to report
true validations, e.g. micro payments as reward for the true reports [117, 118].
These incentives are part of the reputation system. Such central entity that pays
clients is not feasible in a decentralised, peer-to-peer reputation system. In our
work, the incentives are enforced by the actors of such system: clients that will vote
negatively dishonest peers, and providers may apply discrimination to them under
certain conditions.

124

Chapter 8

Conclusions and Future Work

This thesis addressed the problem of improving the Quality of the Business of Cloud
providers according to their Business-Level Objectives.

We proposed a set of policies for SLA negotiation and enforcement to manage
Cloud resources while dealing with different BLOs. The set of policies consider
the particularities of virtualisation technology, like runtime migration of tasks or
dynamic reallocation of resources. In a first instance, this thesis considered Revenue
Maximisation and Client Classification (according to two facets: client affinity and
QoS level) as sample BLOs to prove the efficiency of the rules. These policies are
applied in conjunction with a revenue model that is suitable for Clouds.

Markets are open and changing environments. Describing the behaviour of its
participants with static models may not be accurate because of the lack of knowledge
about some variables, and because changes in the environment may degrade the
effectiveness of the model. This thesis contributed to solve this issue with the
inclusion of adaptive models to the policy set of the providers. The validity of
genetic algorithms has been proved by means of its usage during the negotiation
stage.

Another problem that may decrease the accuracy of policies is the impact of
unwanted events in the BLOs achievement. This thesis incorporates a propagative
risk model that considers the particularities of Cloud appliances formed by sev-
eral resources that are linked between them. This model helps providers to reduce
risks appliances by means of allocating resources adequately and adding redundancy
where it is economically effective.

The aforementioned policies considered only the short-term consequences of the
behaviour of the providers. Incorporating trust and reputation within the objectives
of a provider contributes to maximise the revenue also in the mid and long term.
Before this, we needed to model a reputation system that is compatible with decen-
tralised cloud computing markets, based on a Peer-to-peer communication model.

From a general point of view, we can definitely state that this thesis contributed
to solve the research questions that were raised at the introduction. Both resources
and market layers can collaborate to maximise their objectives by exchanging in-
formation during their operation (Hypothesis H1). Resource-level information helps
improving the negotiations. Brokers can adjust prices to the current status of the
market and increasing the utilisation rate of the resources to an envisioned future
status. Business-level information is successfully used to manage the resources for

125

minimizing the economical impact of adverse situations such as estimation at re-
source allocation or hardware failures. Our experiments concluded that applying
the set of revenue maximisation policies can increase the revenue up to 200% during
negotiation and can decrease the economic penalties up to 90%. If the set of policies
are applied to classify clients, the average affinity of the clients that use the system
is doubled, and the average affinity of the users that suffer from SLA violations is
reduced to the half. In terms of level of QoS, the application of SLA Enforcement
policies helps differentiating the SLAs in terms of violations. Almost no gold SLAs
were violated and the proportion of silver SLAs that were violated was lower than
the proportion of violated bronze SLAs in most scenarios.

Cloud providers can adapt their behaviour to changing market environments if
they are provided with models and policies that consider both quantitative and qual-
itative changes in the environment (Hypothesis H2). The results stated in this thesis
demonstrated that this adaptation provides a competitive advantage over providers
without self-adaptation. Providers that applied a genetic pricing model earned up
to 100% more than providers that dynamically price resources as a function of static
models.

Cloud providers can improve their mid and long-term Quality of Business if they
consider other BLOs that are not directly related with the revenue (Hypothesis
H3). We showed that providers that behave honestly and apply revenue maximi-
sation policies, in most cases indirectly keep a good enough reputation rate and
achieve higher revenue than the providers that only apply reputation maximisation.
The benefits of reputation maximisation in terms of revenue were noticeable under
conditions that imply a high rate of SLA violations. Our experiments showed that
policies that are unaware of the reputation may have economic losses during sys-
tem outages while policies that are aware of the reputation keep economic profits
(reducing the penalties in an order of magnitude of -200%).

Quantifying the uncertainty and considering its effect over the objectives im-
proves the accuracy of the business policies (Hypothesis H4). This thesis showed
that differentiating risk levels can cover the multiple customer profiles. The ex-
perimental results showed that the PoF of Silver clients oscillated in the range of
30%-60% lower than Bronze clients. The PoF of Gold clients was around 85% lower
than Bronze clients. Our model also helps adapting prices to the long-term, allowing
the provider to estimate how much the prices of the resources decay over time, as
long as resources are getting old. This allows pricing SLAs proportionally to their
associated risk and motivates providers offering differentiated QoS levels, because
high QoS increases the margin of profit and helps amortizing quicker the resources.
In our results, a CPU hour of Gold QoS doubled the profit of a Bronze SLA and
was ∼30-40% higher than the profit of Silver SLAs.

8.1 Discussion: porting this thesis to current com-

mercial Clouds

This thesis is based in an Open Cloud Market model that assumes several Cloud in-
frastructure providers that communicate with the clients through a common layer.
In this model, the same client application may negotiate SLAs and deploy ser-

126

vices and tasks in different providers because they use standardized interfaces (e.g.
OCCI [63] and/or Open Virtualization Format [119]). Nowadays the reality is an-
other: there are a few big Cloud providers that almost completely share the Cloud
market [120]. Each provider implements its own proprietary interface, making diffi-
cult to migrate applications from one provider to another.

Our research is focused in the negotiation and management of resources at the
provider side. For that reason, the models could be adapted to a standalone envi-
ronment that is not aware of any market middleware. We envision the following key
points, which should be addressed during the process of implementing our research
in a commercial cloud that is not part of any Open Cloud Market:

• The offer-counteroffer negotiation model could be maintained, although it
would be less useful for the client because it could not negotiate with mul-
tiple providers at the same time. As an alternative, it would be feasible to
adopt a model similar to the Amazon EC2 Spot Instances: a client specifies
the maximum price it is willing to pay for an instance. The price of the spot
instances fluctuates in function of the offer and demand. When the spot price
is lower than the bid price, the instance is executed until the spot price is
higher again.

• There is no Market Information System to provide real-time information about
the sales of the market, as required for the continuous training of the genetic
algorithm in Chapter 4. Some providers publish their pricing information [121].
The provider should implement a component that checks all the pricing charts
from other providers and aggregates all this information.

• The trust infrastructure could be maintained as an independent service. The
issues that need to be addressed to effectively implement it are extensively
discussed in Chapter 5, Section 5.6.

8.2 Future work

Addressing the research questions stated in this thesis opened new lines for future
work.

Our first line for future work is related to the application of policies to improve
both business and technical objectives. The validity of the rules must be investigated
in greater detail, by executing the tests in real platforms to check how runtime
migrations or dynamic scaling of resources behave in current virtualisation systems.

In addition, the effectiveness of overselling policies can be improved by enhancing
the workload prediction and SLA decomposition algorithms.

The policies of this thesis need to be extended to incorporate new Business-Level
Objectives, such as those related with Energy and Ecological Efficiency [122].

This thesis was a first approach to genetic pricing for Cloud Computing Markets.
In the future, this pricing model could be extended by adding even more dynamicity
with a meta-genome that is able to dynamically tune up some data about the chro-
mosomes and the population, such as the number of chromosomes, the mutation
rate, the memory rate of the scoring process, etc. At last, new ways of representing
the generic pricing function must be explored, such as the defining more complex

127

the relations between the parameters of the function of the chromosome, such as
logarithms, sinus, derivatives, etc.

The knowledge and application of adaptive algorithms must also be extended to
other policies, in addition to pricing: overselling, migrations, cancellation, calcula-
tion of risk, etc. In addition to genetic algorithms, other machine learning models
should be considered and evaluated.

With respect to trust and reputation, this thesis opens a wide range of future
work lines: the context-aware provider must be improved with the addition of statis-
tical analysis to dynamically learn how the actions of the provider during negotiation
and operation can influence the future reputation. We also plan to improve the pol-
icy for selecting the SLAs that are going to be violated. The objective is to achieve a
policy that is able to ponder both reputation and revenue maximisation objectives.

Our trust and reputation model has been tested under simple reputation attacks.
The dissemination of our work will be complemented with deeper analysis about
the performance of the system with respect to coordinated and sybil attacks [123],
such as oscillation attacks (the attackers are divided in two teams; a team behaves
correctly to build their confidence from the other peers and the other perform repu-
tation attacks; after a time, the roles are exchanged to recover the confidence for one
group and maximize the impact of the other), whitewashing (dishonest peers abuse
the system and then leave the system and enter again with a new identity), and
denial of service (after a poor QoS provision, dishonest providers will try preventing
the calculation and dissemination of reputation values).

The risk propagation model will be improved in the future with bidirectional
dependencies and allowing cyclic graphs. The node-level risk analysis will also be
improved by exploring alternative methods to the statistical analysis: machine learn-
ing, non-linear regressions, etc. In addition, a fourth policy should be evaluated:
minimisation of risk at graph level with minimisation of cost at node level. For
some applications, this policy could help extending the lifetime of resources and
minimising the risk at the same time. This policy would help amortising even more
the resources and increase the profit of the provider.

The other main line for future research is related to the automated analysis
of graphs. New pattern recognition techniques must be introduced to allow the
provider to automatically identify critical points of failure and suggest corrective
actions that would minimise the risk only in the required points of the graph to
avoid soaring the costs due to the excess of redundancy.

128

Bibliography

[1] J. Basney and M. Livny, “Deploying a high throughput computing cluster,”
in High Performance Cluster Computing: Architectures and Systems, Volume
1, R. Buyya, Ed. Prentice Hall PTR, 1999.

[2] M. A. Rappa, “The utility business model and the future of computing ser-
vices,” IBM Syst. J., vol. 43, no. 1, pp. 32–42, 2004.

[3] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented cloud computing:
Vision, hype, and reality for delivering it services as computing utilities,” in
10th IEEE Intl. Conf. on High Performance Computing and Communications
(HPCC 2008). Dalian, China: IEEE Computer Society, September 2008, pp.
5–13.

[4] A. V. Moorsel, “Metrics for the internet age: Quality of experience and quality
of business,” HP, Tech. Rep. HPL-2001-179, 2001.

[5] D. Neumann, J. Stoesser, A. Anandasivam, and N. Borissov, “SORMA - build-
ing an open grid market for grid resource allocation,” in 4th international
workshop on Grid economics and business models (GECON’07). Berlin, Hei-
delberg: Springer-Verlag, 2007, pp. 194–200.

[6] Amazon EC2 instances (last visit: Nov. 2013). [Online]. Available:
http://aws.amazon.com/ec2/instance-types/

[7] Windows azure (last visit: Nov. 2013). [Online]. Available:
http://www.windowsazure.com/

[8] J. Altmann, C. Courcoubetis, G. D. Stamoulis, M. Dramitinos, T. Rayna,
M. Risch, and C. Bannink, “Gridecon: A market place for computing re-
sources,” in 5th International Workshop on Grid Economics and Business
Models (GECON’08), Las Palmas, Spain, 2008, pp. 185–196.

[9] S. Garg, C. Vecchiola, and R. Buyya, “Mandi: a market exchange for trading
utility and Cloud computing services,” The Journal of Supercomputing,
vol. 64, pp. 1–22, 2011. [Online]. Available: http://dx.doi.org/10.1007/s11227-
011-0568-6

[10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the
clouds: A berkeley view of cloud computing,” EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2009-28, Feb 2009. [Online].

129

Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-
28.html

[11] P. Mell and T. Grance, “The nist definition of cloud computing,”
National Institute of Standards and Technology (NIST), Gaithers-
burg, MD, Tech. Rep. 800-145, September 2011. [Online]. Available:
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[12] A. Moura, J. Sauve, and C. Bartolini, “Research challenges of business-driven
it management,” in 2nd IEEE/IFIP International Workshop on Business-
Driven IT Management, 2007 (BDIM ’07), Munich, Germany, 2007, pp. 19–
28.

[13] T. Püschel, N. Borissov, M. Macias, D. Neumann, J. Guitart, and J. Torres,
“Economically enhanced resource management for internet service utilities.” in
The 8th International Conference on Web Information Systems Engineering
(WISE 2007), ser. Lecture Notes in Computer Science, vol. 4831. Nancy,
France: Springer, 2007, pp. 335–348.

[14] M. Macias, G. Smith, O. Rana, J. Guitart, and J. Torres, “Enforcing service
level agreements using an economically enhanced resource manager,” in 1st
Workshop on Economic Models and Algorithms for Grid Systems (EMAGS
2007), Austin, Texas, USA, September 2007.

[15] M. Macias, O. Rana, G. Smith, J. Guitart, and J. Torres, “Maximizing rev-
enue in Grid markets using an Economically Enhanced Resource Manager,”
Concurrency and Computation: Practice and Experience, vol. 22, no. 14, pp.
1990–2011, September 2010.

[16] I. Goiri, “Towards virtualized service providers,” Master’s thesis, Technical
University of Catalonia, 2008.

[17] L. Youseff, R. Wolski, B. Gorda, and C. Krintz, “Evaluating the performance
impact of xen on mpi and process execution for hpc systems,” in 2nd In-
ternational Workshop on Virtualization Technology in Distributed computing.
Washington, DC, USA: IEEE Computer Society, 2006, p. 1.

[18] N. Huber, M. von Quast, M. Hauck, and S. Kounev, “Evaluating and modeling
virtualization performance overhead for cloud environments.” in 1st Interna-
tional Conference on Cloud Computing and Services Science (CLOSER 2011),
Noordwijkerhout, The Netherlands, 2011, pp. 563–573.

[19] P. Barford and M. Crovella, “Generating representative web workloads for
network and server performance evaluation,” in 1998 ACM SIGMETRICS
joint international conference on Measurement and modeling of computer sys-
tems (SIGMETRICS ’98/PERFORMANCE ’98), vol. 26, no. 1. Madison,
Wisconsin, USA: ACM Press, June 1998, pp. 151–160.

[20] N. Poggi, T. Moreno, J. Berral, R. Gavalda, and J. Torres, “Self-adaptive
utility-based web session management,” Computing Networks, vol. 53:10, pp.
1712–1721, 2009.

130

[21] I. Foster, “The anatomy of the grid: Enabling scalable virtual organizations,”
in IEEE International Symposium on Cluster Computing and the Grid, vol. 0.
Brisbane, Australia: IEEE Computer Society, 2001, p. 6.

[22] A. Oguz, A. T. Campbell, M. E. Kounavis, and R. F. Liao, “The Mobiware
Toolkit: Programmable Support for Adaptive Mobile Networking,” IEEE Pes-
ronal Communications Magazine, Special Issue on Adapting to Network and
Client Variability, vol. 5, pp. 32–43, 1998.

[23] G. Bochmann and A. Hafid, “Some Principles for Quality of Service Manage-
ment,” Universite de Montreal, Tech. Rep. 1, 1996.

[24] V. Deora, J. Shao, W. A. Gray, and N. J. Fiddian, “A Quality of Service Man-
agement Framework Based on User Expectations,” in International Confer-
ence on Service Oriented Computing (ICSOC) Trento, Italy, December 2003,
pp. 104–114.

[25] I. T. Foster, M. Fidler, A. Roy, V. Sander, and L. Winkler, “End-to-end qual-
ity of service for high-end applications,” Computer Communications, vol. 27,
no. 14, pp. 1375–1388, 2004.

[26] C. Shin Yeo and R. Buyya, “Pricing for utility-driven resource management
and allocation in clusters,” International journal on High Performance Com-
puter Applications, vol. 21, no. 4, pp. 405–418, Nov. 2007.

[27] M. Macias and J. Guitart, “Using resource-level information into nonaddi-
tive negotiation models for cloud market environments,” in 12th IEEE/IFIP
Network Operations and Management Symposium (NOMS’10), Osaka, Japan,
April 2010, pp. 325–332.

[28] H. Raiffa, The art and science of negotiation. Cambridge, Mass: Belknap
Press of Harvard University Press, 1982.

[29] P. Faratin, C. Sierra, and N. R. Jennings, “Negotiation decision functions
for autonomous agents,” International Journal of Robotics and Autonomous
Systems, vol. 24, pp. 3–4, 1998.

[30] T. Murofushi and M. Sugeno, “An interpretation of fuzzy measures and the
choquet integral as an integral with respect to a fuzzy measure,” Fuzzy Sets
Syst., vol. 29, no. 2, pp. 201–227, 1989.

[31] S. Angilella, S. Greco, F. Lamantia, and B. Matarazzo, “Assessing non-
additive utility for multicriteria decision aid,” European Journal of Operational
Research, vol. 158, pp. 734–744, noviembre 2004.

[32] M. Macias and J. Guitart, “On the use of resource-level information for en-
hancing sla negotiation in market-based utility computing environments,”
Master’s thesis, Technical University of Catalonia, 2009.

[33] J. Guitart, M. Macias, O. Rana, P. Wieder, R. Yahyapour, and W. Ziegler,
Market-Oriented Grid and Utility Computing. Wiley, 2009, no. 12, ch. SLA-
based Resource Management and Allocation, pp. 261–284.

131

[34] Economically Enhanced Resource Manager. [Online]. Available:
http://www.sf.net/projects/eerm

[35] “Genetic pricing cloud market simulator,” Online,
https://github.com/mariomac/GeneticPricing.

[36] “Reputation-aware cloud market simulator,” Online,
https://github.com/mariomac/reputation.

[37] “Risk-aware cloud market simulator,” Online,
https://github.com/mariomac/riskCloud.

[38] “Drools rule engine.” [Online]. Available: http://www.jboss.org/drools

[39] L. M. Kaufman, “Data security in the world of cloud computing,” IEEE Se-
curity and Privacy, vol. 7, pp. 61–64, 2009.

[40] M. E. Porter, “Clusters and the new economics of competition,” Harvard
Business Review, vol. 76, no. 6, pp. 77–90, Nov-Dec 1998.

[41] Spotify. [Online]. Available: http://www.spotify.com

[42] S. Ferretti, V. Ghini, F. Panzieri, M. Pellegrini, and E. Turrini, “QoS-aware
Clouds,” in 2010 IEEE 3rd International Conference on Cloud Computing,
ser. CLOUD ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp.
321–328. [Online]. Available: http://dx.doi.org/10.1109/CLOUD.2010.17

[43] I. Goiri, F. Julia, J. O. Fito, M. Macias, and J. Guitart, “Resource-level qos
metric for cpu-based guarantees in cloud providers,” in Proceedings of the
7th International Workshop on the Economics and Business of Grids, Clouds,
Systems, and services (GECON 2010), vol. 6296, August 2010, pp. 34–47.

[44] G. Reig, J. Alonso, and J. Guitart, “Prediction of job resource requirements
for deadline schedulers to manage high-level SLAs on the cloud,” in 9th IEEE
Intl. Symp. on Network Computing and Applications, Cambridge, MA, USA,
July 2010, pp. 162–167.

[45] I. Goiri, F. Julia, J. Ejarque, M. de Palol, R. Badia, J. Guitart, and J. Torres,
“Introducing virtual execution environments for application lifecycle manage-
ment and SLA-driven resource distribution within service providers,” in 8th
IEEE Intl. Symposium on Network Computing and Applications (NCA’09),
Cambridge, MA, USA, July 2009, pp. 211–218.

[46] I. Goiri, F. Julia, and J. Guitart, “Efficient data management support for
virtualized service providers,” in 17th Euromicro Conf. on Parallel, Distributed
and Network-based Processing (PDP’09), Weimar, Germany, February 2009,
pp. 409–413.

[47] J. Torres, D. Carrera, V. Beltran, N. Poggi, K. Hogan, J. Berral, R. GavaldÃ,
E. Ayguade, T. Moreno, and J. Guitart, “Tailoring resources: The energy effi-
cient consolidation strategy goes beyond virtualization,” in 5th IEEE Interna-
tional Conference on Autonomic Computing (ICAC 2008), Chicago, Illinois,
USA, June 2008, pp. 197–198.

132

[48] J. Guitart, M. Macias, K. Djemame, T. Kirkham, M. Jiang, and D. Arm-
strong, “Risk-driven proactive fault-tolerant operation of iaas providers,” in
Proceedings of the 5th IEEE International Conference on Cloud Computing
Technology and Science (CloudCom 2013).

[49] M. Macias and J. Guitart, “Influence of reputation in revenue of grid service
providers,” in 2nd International Workshop on High Performance Grid Mid-
dleware (HiPerGRID’08), Bucharest, Romania, November 2008, pp. 9–16.

[50] R. Tehrani, “Amazon EC2 outage: what the experts tell us,” Customer Inter-
action Solutions, vol. 29, no. 12, p. 1, May 2011.

[51] L. Phlips, “Intertemporal price discrimination and sticky prices,” The Quar-
terly Journal of Economics, vol. 94, no. 3, pp. 525–542, 1980.

[52] J. R. Koza, Genetic programming: on the programming of computers by means
of natural selection. Cambridge, MA, USA: MIT Press, 1992.

[53] S.-H. Cheng, Ed., Evolutionary Computation in Economics and Finance, ser.
Studies in Fuzziness and Soft Computing. Springer-Verlag, 2002, vol. 100,
no. XII.

[54] R. Brunner, F. Freitag, and L. Navarro, “Towards the development of a de-
centralized market information system: Requirements and architecture.” in
PDCoF’08 The First Workshop on Parallel and Distributed Computing in Fi-
nance (Computational Finance). Miami, FL, USA: IEEE, 2008, p. 1–7.

[55] “eBay.” [Online]. Available: http://www.ebay.com/

[56] R. Kerr and R. Cohen, “Smart cheaters do prosper: defeating trust and
reputation systems,” in Proceedings of The 8th International Conference
on Autonomous Agents and Multiagent Systems - Volume 2, ser.
AAMAS ’09. Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems, 2009, pp. 993–1000. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1558109.1558151

[57] M. Gupta, P. Judge, and M. Ammar, “A reputation system for peer-to-peer
networks,” in 13th international workshop on Network and operating systems
support for digital audio and video (NOSSDAV ’03). Monterey, CA, USA:
ACM, 2003, pp. 144–152.

[58] J. Zhang, “Promoting honesty in electronic marketplaces: Combining trust
modeling and incentive mechanism design,” Ph.D. dissertation, School of
Computer Science, University of Waterloo, Waterloo, Ontario, Canada, May
2009. [Online]. Available: http://hdl.handle.net/10012/4413

[59] R. Kerr and R. Cohen, “Trust as a tradable commodity: A foundation for safe
electronic marketplaces,” Computational Intelligence, vol. 26, no. 2, 2010.

[60] M. Macias, O. Fito, and J. Guitart, “Rule-based SLA management for revenue
maximisation in cloud computing markets,” in 2010 Intl. Conf. of Network and

133

Service Management (CNSM’10), Niagara Falls, Canada, October 2010, pp.
354–357.

[61] M. Macias and J. Guitart, “Client classification policies for SLA enforcement
in shared cloud datacenters,” in 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid’12), Ottawa, Canada, May
2012, pp. 156–163.

[62] F. Leone, L. Nelson, and R. Nottingham, “The folded normal distribution,”
Technometrics, vol. 3, no. 4, pp. 543–550, 1961.

[63] T. Metsch and A. Edmonds, “Open Cloud Computing Interface - Infrastruc-
ture,” Open Grid Forum, Tech. Rep. GFD-P-R.184, 2011.

[64] ISO 31000 2009 Risk management. Principles and guidelines, International
Standards Organization, June 2013, TC/SC: ISO/TC 262. ICS: 03.100.01.

[65] B. Schroeder and G. A. Gibson, “A large-scale study of failures in
high-performance computing systems,” in Proceedings of the International
Conference on Dependable Systems and Networks, ser. DSN ’06. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 249–258. [Online]. Available:
http://dx.doi.org/10.1109/DSN.2006.5

[66] A. Sulistio, “Advance reservation and revenue-based resource
management for grid systems,” Ph.D. dissertation, The Uni-
versity of Melbourne, Australia, 2008. [Online]. Available:
http://www.cloudbus.org/students/anthony sulistio PhD thesis2008.pdf

[67] X. León, “Economic regulation for multi tenant infrastructures,” Ph.D.
dissertation, Technical University of Catalonia, 2013. [Online]. Available:
http://people.ac.upc.edu/xleon/papers/phdthesis/xleon13phdthesis.pdf

[68] R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud: Utility-oriented fed-
eration of cloud computing environments for scaling of application services,”
in Algorithms and architectures for parallel processing. Springer, 2010, pp.
13–31.

[69] D. Villegas, N. Bobroff, I. Rodero, J. Delgado, Y. Liu, A. Devarakonda,
L. Fong, S. Masoud Sadjadi, and M. Parashar, “Cloud federation in a lay-
ered service model,” Journal of Computer and System Sciences, vol. 78, no. 5,
pp. 1330–1344, 2012.

[70] L. Gillam, K. Ahmad, and G. Dear, “Grid-enabling social scientists:
The fingrid infrastructure,” in 1st International Conference on e-
Social Science, Manchester, 22 - 24 June 2005. [Online]. Available:
http://lirics.loria.fr/doc pub/grid enabling social scientists.pdf

[71] Catnets. [Online]. Available: http://www.catnets.uni-bayreuth.de

[72] F. A. Hayek, W. Bartley, P. Klein, and B. Caldwell, The collected works of F.
A. Hayek. University of Chicago Press, 1989.

134

[73] Information Society Technologies Programme. [Online]. Available:
http://www.cordis.lu/ist

[74] L. Zadeh, K. Fu, K. Tanaka, and M. Shimura, Fuzzy sets and their applications
to Cognitive and Decision Processes. Academic Press, New York, 1975.

[75] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou, and K. Krishnaku-
mar, “A multi-agent infrastructure and a service level agreement negotiation
protocol for robust scheduling in grid computing,” in European Grid Con-
ference, ser. Lecture Notes in Computer Science. Amsterdam, Netherlands:
Springer-Verlag, 2005, pp. 651–660.

[76] R. G. Smith, “The contract net protocol: High-level communication and con-
trol in a distributed problem solver,” Transactions on Computers, vol. C-29,
no. 12, pp. 1104–1113, 1980.

[77] Web Services Agreement specification. [Online]. Available:
http://www.ogf.org/documents/GFD.107.pdf

[78] N. Vulkan and N. R. Jennings, “Efficient mechanisms for the supply of services
in multi-agent environments,” in First international conference on Information
and computation economies (ICE ’98). Charleston, SC, USA: ACM, 1998,
pp. 1–10.

[79] H. Xu and B. Li, “Maximizing revenue with dynamic cloud pricing: The infi-
nite horizon case,” in IEEE ICC 12, Next-Generation Networking Symposium,
Ottawa, ON, Canada, june 2012, pp. 2929–2933.

[80] C. S. Yeo and R. Buyya, “A taxonomy of market-based resource management
systems for utility-driven cluster computing,” Softw. Pract. Exper., vol. 36,
no. 13, pp. 1381–1419, 2006.

[81] M. J. Freedman, C. Aperjis, and R. Johari, “Prices are right: Managing re-
sources and incentives in peer-assisted content distribution,” in Proc. 7th In-
ternational Workshop on Peer-to-Peer Systems (IPTPS08), Tampa Bay, FL,
February 2008, pp. 18–23.

[82] S. Wee, “Debunking real-time pricing in cloud computing,” in 11th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-
ing 2011, Newport Beach, CA, USA, may 2011, pp. 585 –590.

[83] T. Pueschel and D. Neumann, “Management of cloud infrastructures: Policy-
based revenue optimization,” in International Conference on Information Sys-
tems (ICIS 2009), Phoenix, Arizona, December 2009, pp. 178–193.

[84] S. Aiber, D. Gilat, A. Landau, and A. Sela, “Autonomic self-optimization
according to business objectives,” in Proceedings of the First International
Conference on Autonomic Computing. Washington, DC, USA: IEEE Com-
puter Society, 2004, pp. 206–213.

135

[85] P. Herrero, J. L. Bosque, M. Salvadores, and M. S. Perez, “A rule based
resources management for collaborative grid environments,” Int. J. Internet
Protoc. Technol., vol. 3, no. 1, pp. 35–45, 2008.

[86] J. Schiefer, S. Rozsnyai, C. Rauscher, and G. Saurer, “Event-driven rules
for sensing and responding to business situations,” in Inaugural International
Conference on Distributed Event-Based Systems (DEBS 07). Toronto, On-
tario, Canada: ACM, 2007, pp. 198–205.

[87] D. Weng and M. Bauer, “Using policies to drive autonomic management of
virtual systems,” in 2010 Intl. Conf. of Network and Service Management
(CNSM’10), Niagara Falls, Canada, Oct. 2010, pp. 258–261.

[88] A. Sulistio, K. H. Kim, and R. Buyya, “Managing cancellations and no-shows
of reservations with overbooking to increase resource revenue,” in Intl. Symp.
on Cluster Computing and the Grid (CCGRID 2008). Lyon, France: IEEE
Computer Society, May 2008, pp. 267–276.

[89] P. Dube, Y. Hayel, and L. Wynter, “Yield management for IT resources on
demand: analysis and validation of a new paradigm for managing computing
centres,” Journal of Revenue and Pricing Management, vol. 4:1, pp. 24–38,
2005.

[90] D. A. Menascé, V. A. F. Almeida, R. Fonseca, and M. A. Mendes, “Business-
oriented resource management policies for e-commerce servers,” Perform.
Eval., vol. 42, no. 2-3, pp. 223–239, 2000.

[91] Client classification and reclassification policy of rabobank
polska sa (last visit: Nov. 2013). [Online]. Available:
https://www.rabobank.com/en/locateus/eu/poland/mifid.html

[92] A. Lage Freitas, N. Parlavantzas, and J.-L. Pazat, “Cost Reduction
Through SLA-driven Self-Management,” in European Conference on Web
Services (ECOWS), Lugano, Suisse, Sep. 2011. [Online]. Available:
http://hal.inria.fr/inria-00600289

[93] R. D. James, J. E. Hanson, J. O. Kephart, and G. Tesauro, “Agent-human
interactions in the continuous double auction,” in 17th International Joint
Conference on Artificial Intelligence, Seattle, Washington, USA, 2001, pp.
1169–1176.

[94] S.-H. Chen, Ed., Genetic Algorithms and Genetic Programming in Computa-
tional Finance. Norwell, MA, USA: Kluwer Academic Publishers, 2002.

[95] N. Borissov, B. Blau, and D. Neumann, “Semi-automated Provisioning and
Usage of Configurable Web Services,” in 16th European Conference on Infor-
mation Systems (ECIS), Galway, Ireland, June 2008, pp. 1941–1952.

[96] D. Cliff, “Evolution of market mechanism through a continuous space of
auction-types,” in World on Congress on Computational Intelligence, vol. 2.
Honolulu, Hawaii, USA: IEEE Computer Society, 2002, pp. 2029–2034.

136

[97] M. B. E. Fayek, I. A. Talkhan, and K. S. El-Masry, “Gama (genetic algorithm
driven multi-agents)for e-commerce integrative negotiation,” in 11th Annual
conference on Genetic and evolutionary computation (GECCO ’09). Mon-
treal, Québec, Canada: ACM, 2009, pp. 1845–1846.

[98] N. K. Chidambaran, C.-W. J. Lee, and J. R. Trigueros, “An adaptive
evolutionary approach to option pricing via genetic programming,” New
York University, Leonard N. Stern School of Business-, New York University,
Leonard N. Stern School Finance Department Working Paper Series, 1998.
[Online]. Available: http://econpapers.repec.org/RePEc:fth:nystfi:98-086

[99] J. Cordier and M. Gross, The complete guide to option selling: how selling
options can lead to stellar returns in bull and bear markets. McGraw-Hill,
2004.

[100] F. Black and M. S. Scholes, “The pricing of options and corporate liabilities,”
Journal of Political Economy, vol. 81, no. 3, pp. 637–54, May-June 1973.
[Online]. Available: http://ideas.repec.org/a/ucp/jpolec/v81y1973i3p637-
54.html

[101] H. Qin, X. Wu, J. Hou, H. Wang, W. Zhang, and W. Dou,
“Self-adaptive cloud pricing strategies with markov prediction and data
mining method,” in Proceedings of the 2012 International Conference
on Cloud and Service Computing, ser. CSC ’12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 219–226. [Online]. Available:
http://dx.doi.org/10.1109/CSC.2012.41

[102] F. V. Jensen, An introduction to Bayesian networks. UCL press, 1996, vol.
210.

[103] K. Djemame, J. Padgett, I. Gourlay, and D. Armstrong, “Brokering of
risk-aware service level agreements in grids,” Concurr. Comput. : Pract.
Exper., vol. 23, no. 13, pp. 1558–1582, Sep. 2011. [Online]. Available:
http://dx.doi.org/10.1002/cpe.1721

[104] W. Michalk, L. Filipova-Neumann, B. Blau, and C. Weinhardt, “Reducing
risk or increasing profit? provider decisions in agreement networks,”
Service Science, vol. 3, no. 3, pp. 206–222, 2011. [Online]. Available:
http://pubsonline.informs.org/doi/abs/10.1287/serv.3.3.206

[105] W. Michalk and B. Blau, “Risk in agreement networks: Decision support
for service-intermediaries,” Information systems and e-business management,
vol. 9, no. 2, pp. 247–266, 2011.

[106] C. S. Yeo and R. Buyya, “Integrated Risk Analysis for a Commercial Comput-
ing Service in Utility Computing,” Journal of Grid Computing, vol. 7, no. 1,
pp. 1–24, Mar. 2009.

[107] H. Cho, “A risk assessment methodology for incorporating uncertain-
ties using fuzzy concepts,” Reliability Engineering & System Safety,

137

vol. 78, no. 2, pp. 173–183, November 2002. [Online]. Available:
http://dx.doi.org/10.1016/S0951-8320(02)00158-8

[108] C. Sawade, N. Landwehr, S. Bickel, and T. Scheffer, “Active risk estima-
tion,” in Proceedings of the 27th International Conference on Machine Learn-
ing (ICML10). Haifa, Israel: Omnipress, June 2010, pp. 951–958.

[109] M. Becker, N. Borrisov, V. Deora, O. F. Rana, and D. Neumann, “Using k-
pricing for penalty calculation in grid market,” in 41st Hawaii International
International Conference on Systems Science (HICSS-41 2008). Waikoloa,
Big Island, HI, USA: IEEE Computer Society, January 2008, pp. 97–106.

[110] B. Li and L. Gillam, “Risk informed computer economics,” in Pro-
ceedings of the 2009 9th IEEE/ACM International Symposium on
Cluster Computing and the Grid, ser. CCGRID ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 526–531. [Online]. Available:
http://dx.doi.org/10.1109/CCGRID.2009.18

[111] A. Lage Freitas, N. Parlavantzas, and J.-L. Pazat, “An Integrated Approach
for Specifying and Enforcing SLAs for Cloud Services,” in IEEE 5th
International Conference on Cloud Computing (CLOUD 2012), Honolulu,
États-Unis, Jun. 2012. [Online]. Available: http://hal.inria.fr/hal-00703129

[112] F. Azzedin and M. Maheswaran, “Evolving and managing trust in grid com-
puting systems,” in Proceedings of the IEEE Canadian Conference on Electri-
cal Computer Engineering CCECE 02, vol. 3, Winnipeg, Manitoba, Canada,
2002, pp. 1424–1429.

[113] R. Alnemr, S. Koenig, T. Eymann, and C. Meinel, “Enabling usage control
through reputation objects: A discussion on e-commerce and the internet of
services environments,” Journal of theoretical and applied electronic commerce
research, vol. 5, no. 2, pp. 59–76, 2010.

[114] O. Rana, M. Warnier, T. B. Quillinan, and F. Brazier, “Monitoring and rep-
utation mechanisms for service level agreements,” in 5th International Work-
shop on Grid Economics and Business Models (GECON ’08), Las Palmas de
Gran Canaria, Spain, 2008, pp. 125–139.

[115] L. Xiong and L. Liu, “Peertrust: Supporting reputation-based trust for peer-
to-peer electronic communities,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 16, no. 7, pp. 843–857, 2004.

[116] B. Yu and M. Singh, “A social mechanism of reputation management in elec-
tronic communities,” Cooperative Information Agents IV-The Future of Infor-
mation Agents in Cyberspace, pp. 355–393, 2000.

[117] N. Miller, P. Resnick, and R. Zeckhauser, “Eliciting honest feedback
in electronic markets,” Harvard University, John F. Kennedy School of
Government, Working Paper Series rwp02-039, Sep. 2002. [Online]. Available:
http://ideas.repec.org/p/ecl/harjfk/rwp02-039.html

138

[118] R. Jurca and B. Faltings, “An incentive compatible reputation mechanism,”
in IEEE Conference on E-Commerce, Newport Beach, CA, USA, June 24-27
2003, pp. 285–292.

[119] L. Lamer and H. S. (eds.), “Open virtualization format specification 2.1.0,”
Distributed Management Task Force, Tech. Rep. DSP0243, 2013.

[120] Sinergy Research Group. (2013) IBM, Microsoft and Google make
little headway against Amazon’s IaaS/PaaS dominance. [Online]. Avail-
able: https://www.srgresearch.com/articles/ibm-microsoft-and-google-still-
make-little-headway-q3-against-amazons-iaaspaas-dominance

[121] AWS Spot Prices History. [Online]. Available: http://awsspotprices.com

[122] J. Subirats, “Assessing and forecasting energy and ecological effi-
ciency on cloud computing platforms,” Technical University of Cat-
alonia, Tech. Rep. UPC-DAC-RR-2013-48, 2013. [Online]. Available:
https://www.ac.upc.edu/app/research-reports/html/2013/48/thesisJSC.pdf

[123] A. Cheng and E. Friedman, “Sybilproof reputation mechanisms,” in
Proceedings of the 2005 ACM SIGCOMM Workshop on Economics of Peer-
to-peer Systems, ser. P2PECON ’05. New York, NY, USA: ACM, 2005, pp.
128–132. [Online]. Available: http://doi.acm.org/10.1145/1080192.1080202

139

