
Enforcing Service Level Agreements using an
Economically Enhanced Resource Manager

Mario Macı́as#1, Garry Smith∗2, Omer Rana∗∗3, Jordi Guitart#4, Jordi Torres#5

#Technical University of Catalonia - Barcelona Supercomputing Center
c/ Jordi Girona 29, 08034 Barcelona, Spain.

1mario.macias@bsc.es
4jguitart@ac.upc.edu

5jordi.torres@bsc.es
∗School of Systems Engineering, University of Reading

RG6 6BX, UK
2garry.smith@computer.org

∗∗School of Computer Science, Cardiff University
CF24 3AA, UK

3O.F.Rana@cs.cardiff.ac.uk

Abstract— Traditional resource management has had as its
main objective the optimisation of throughput, based on pa-
rameters such as CPU, memory, and network bandwidth. With
the appearance of Grid Markets, new variables that determine
economic expenditure, benefit and opportunity must be taken
into account. The SORMA project aims to allow resource owners
and consumers to exploit market mechanisms to sell and buy
resources across the Grid. SORMA’s motivation is to achieve
efficient resource utilisation by maximising revenue for resource
providers, and minimising the cost of resource consumption
within a market environment. An overriding factor in Grid
markets is the need to ensure that desired Quality of Service
levels meet the expectations of market participants. This paper
explains the proposed use of an Economically Enhanced Resource
Manager (EERM) for resource provisioning based on economic
models. In particular, this paper describes techniques used by the
EERM to support revenue maximisation across multiple Service
Level Agreements.

I. I NTRODUCTION

The Self-organising ICT Resource Management
(SORMA) [1] is an EU IST [2] funded project aimed
at developing methods and tools for efficient market-based
allocation of resources, using a self-organising resource
management system and market-driven models, supported by
extensions to existing grid infrastructure. Topics addressed
include Open Grid Markets, economically-driven middleware,
and intelligent support tools.

Unlike traditional grid environments, jobs submitted to
SORMA are matched with available resources according to
the economic preferences of both resource providers and
consumers, and the current market conditions. This means that
the classic grid job scheduler, which is based on performance
rules, is replaced by a set of self-organising, market-aware
agents that negotiate Service Level Agreements (SLAs), to
determine the ‘best’ resource allocation to fulfil both per-
formance and business goals. In SORMA, an Economically
Enhanced Resource Manager (EERM) exists at each resource

provider’s site, and acts as a centralised resource allocator to
support business goals and resource requirements.

While a number of different economic models may be
used to support resource management, this paper will focus
on adaptation mechanisms to support revenue maximisation
across multiple SLAs. In other words, when an EERM receives
job/service reservations and associated SLAs, the EERM must
allocate, monitor and enforce resource constraints in order
maximise the number of jobs whose SLAs can be satisfied.
However:

• the EERM does not have the ability to decide which
jobs must be accepted or rejected. It is only used for
consultative purposes. Even if the EERM advises that
it cannot fulfill an incoming task, the economic agents
could decide to send it to EERM to increase revenue.

• The EERM uses a predictive model to calculate the
impact of a task execution. The prediction could be
wrong, and the system would accept a job which could
not be fulfilled, resulting in system overload.

• An abnormal situation could reduce the number of avail-
able resources; for example, some nodes of an available
cluster could crash.

In the cases described before, the service provider would have
a reduced number of resources, and the system becomes over-
loaded. The approach adopted in this work aims to minimise
the economic impact of SLA violations, whilst at the same
time attempting to enable as many jobs as possible to execute
to completion.

The remainder of the paper is structured as follows: Sec-
tion II presents related work. Section III defines a resource
allocation scenario and describes revenue maximisation and
SLA issues. Section IV describes the EERM’s architecture and
highlights important features. Section V contains an example
scenario that shows the EERM in action. Finally, section VI
concludes the paper and describes our future work.



II. RELATED WORK

QoS has been explored in various contexts, such as for mo-
bile devices [3] and multimedia applications [4]. Two typesof
QoS attributes can be distinguished: those based on quantita-
tive, and qualitative resource characteristics. Qualitative char-
acteristics refer to aspects such as service reliability and user
satisfaction. Quantitative characteristics refer to aspects such
as network latency, CPU performance, or storage capacity.
Although qualitative characteristics are important, it isdifficult
to measure these objectively. Systems which are centered on
the use of such measures utilise user feedback [5] to compare
and relate measures to particular system components. Our
focus is primarily on quantitative characteristics.

Sahai et al. [6] propose an SLA management entity to
support QoS in the context of commercial grids. They envision
the SLA management entity existing within the Open Grid Ser-
vices Architecture (OGSA), with its own set of protocols for
manageability and assurance; they also describe a languagefor
SLA specification. Although an interesting approach, this work
is still at a preliminary stage, and the general applicability of
this work is not obvious.

The Service Negotiation and Acquisition Protocol
(SNAP) [7] is a resource management model to negotiate
resources in distributed systems such as grids. SNAP defines
three types of SLAs that coordinate management across a
desired resource set, and can be used to describe complex
distributed service requirements. Resource interactionsare
mapped to well-defined, platform-independent, SLAs with
the SNAP protocol managing resources across different
administrative domains, via three types of SLAs: Task SLA
(TSLA), Resource SLA (RSLA) and Bind SLA (BSLA). The
TSLA describes the task that needs to be executed, and the
RSLA describes the resources needed to accomplish this task.
The BSLA provides an association between the resources
from the RSLA and the application ‘task’ in the TSLA.
The SNAP protocol requires the existence of a resource
management entity that can provide guarantees on resource
capability; for example, RSLA.

Keahey et al. [8] propose an architecture called Virtual
Application Service (VAS) for managing QoS in computa-
tional grids. VAS is an extended grid service with additional
interfaces for negotiation of QoS level and service demands.
The key objective of VAS is to facilitate the execution of
real-time services with specific deadline constraints. A client
submits a request to VAS for advance or immediate reservation
of a service; supplying only time constraints. Essentially, VAS
is a deadline-bound system, and the client can only specify
time constraints as a QoS metric; VAS requires the application
to predict how long it will need to run. Subsequently, VAS
computes the time needed for service execution, based on a
prediction model and service metadata.
In our approach we make use of different allocation strategies
to run user applications, based on whether they require aTime-
domain or Resource-domain allocation strategy. For users who
request a Time-domain allocation, 100% of the computational

resources must be allocated to their jobs. Whereas VAS
requires users to benchmark their applications by running them
first on an unloaded CPU, we utilise the results of application
execution times where a guaranteed service execution has been
requested, and use these as a benchmark. Burchard et al. [9]
also propose the use of SLAs to negotiate service execution
parameters between resource managers. The SLA management
is achieved via a Virtual Resource Manager (VRM). The
VRM acts as a coordinator to aggregate SLAs negotiated with
different sub-systems. Although the SLA management in this
work is similar to our effort, the focus in our approach is on
utilising the service paradigm, where the VRM is intended to
integrate execution across a number of co-located clusters.

The General-purpose Architecture for Reservation and Allo-
cation (GARA) [10] is the most commonly known framework
to support QoS in the context of computational Grids. GARA
allows users to specify end-to-end QoS requirements and
provides advance reservations to various resources through a
uniform interface. GARA’s reservation is aimed at providing a
guarantee that the client or application initiating the reservation
will receive a specific QoS from the resource manager. Al-
though GARA has gained popularity in the Grid community, it
has limitations in coping with current application requirements
and technologies, including: GARA is not OGSA-compliant;
GARA does not support the concept of an agreement protocol
to support the simultaneous allocation of resources; QoS
monitoring and adaptation during the active QoS session is
one of the most important and successful mechanisms to date
in providing a quality guarantee [11], however, GARA does
not provide adaptive functions to support this.

III. SCENARIO DEFINITION

Multiple economic enhancements exist that could be applied
to resource management. In this paper we focus on only
those related to revenue maximisation across multiple SLAs.
However, an aim of our work is to provide a framework
that will allow grid economists to define their own rules to
achieve their particular goals. Therefore the content of this
paper should be considered as a particular view of how the
system behaves.

The SLA Satisfaction Function determines if, for a set of
n resourcesR = {R1, R2, . . . , Rn}, an SLAS can be fulfilled
(resultstrue) or will be violated (resultsfalse).

The Multiple SLA Satisfaction Function determines if,
for a set ofn resourcesR = {R1, R2, . . . , Rn}, a set ofm
SLAs {S1, S2, . . . , Sm} can all be fulfilled or if any SLA will
be violated.

Consider the follwing scenario – a set of running jobs each
with its own SLA, is assigned to a resource. Each time a new
job/SLA pair arrives, the EERM must assign a portion of the
resource bundle. There are two possible scenarios:

• There are enough free resources, so the Multiple SLA
Satisfaction Function istrue. In this case, it is trivial to
allocate the incoming tasks to a suitable resource. This
scenario will not be studied in this paper.



• There are not enough resources (Multiple SLA Satis-
faction function is false), implying that an intelligent
resource re-allocation mechanism is required for max-
imising revenue and minimising SLA violation penalties.

A. Revenue Maximisation in Resource-Limited Providers

The revenueRevi is the amount of money that a client will
pay if a provider fulfills the SLASi. The revenue is specified
in the same SLA and usually has a fixed value. On the other
hand, we definepenalty Peni as the amount of money that
the provider must pay if the SLASi is violated. The penalty
is also specified in the same SLA and can be a function with
parameters specified as in section III-B.

The gain G(Si) is the economic benefit that the provider
obtains with the execution of a job whose SLA isSi. It is
defined asG(Si) = Revi − Peni and it can be positive
(provider earns money) or negative (SLA violation with high
penalty costs).

In a pool of resourcesR, executing a set of SLAsS at
concrete instantt we define thepunctual gain as:

△G(t, R) =

m∑

i=1

G(Si) =

m∑

i=1

Revi −

m∑

i=1

Peni

which is the gain (or loss) obtained if the current jobs all
execute and finish on the resources that were assigned at
instancet.

When a new SLASi arrives and there are not enough
resources, system overload will cause the provider to start
violating SLAs. To avoid (or minimise) violation penaltiesand
maximise revenue, we suggest two complementary solutions:

• Dynamic adaptation in terms of resource provisioning.
Previous work [12] has demonstrated that we can increase
both the throughput and the number of jobs completed,
by dynamically adapting the share of available resources
between the applications by a function of demand. This is
feasible when several applications share a single multi-
processor platform (by assigning priorities and proces-
sors) or in virtualised environments [13], by dynamically
assigning resources and priorities for each virtual ma-
chine).

• Task reallocation; finding a new resource assignationR′

for each jobi associated with the SLASi. The new gain
will be defined as

△G′(t, R) =

m∑

i=1

G′(Si) − M(S, R)

whereM(S, R) is the economic cost of migrating the cur-
rent running jobsS within the resource bundleR. When
reallocating tasks, the main challenge for the EERM will
be to find the highest△G′(t, R), by predicting the new
gain for each possible assignment of resources, and trying
to minimise the cost of resource reallocationM(S, R).

B. SLA Violation

Monitoring SLA Violation begins once an SLA has been
defined. A copy of the SLA must be maintained by both the
client and the provider. It is necessary to distinguish between
an ‘agreement date’ (agreeing on an SLA) and an ‘effective
date’ (subsequently providing a service based on the Service
Level Objectives (SLOs) that have been agreed). A request to
invoke a service based on the SLOs (which are the SLA terms),
for instance, may be undertaken at a time much later than
when the SLOs were agreed. During provision it is necessary
to determine whether the terms agreed in the SLA have been
met. In this context, a monitoring infrastructure is used to
identify the difference between the agreed upon SLO and the
value that was actually delivered during provisioning. It is also
necessary to define what constitutes a violation. Dependingon
the importance of the violated SLO and/or the consequences
of the violation, the provider in breach may avoid dispatch or
obtain a diminished monetary sanction from the client.

An SLA may be terminated in three situations: (i) when
the service defined in the SLA has completed; (ii) when the
time period over which the SLA has been agreed upon has
expired; and (iii) when the provider is no-longer availableafter
an SLA has been agreed (for instance, the provider’s business
has gone into liquidation). In all three cases, it is necessary for
the SLA to be removed from both the client and the provider.
Where an SLA was actually used to provision a service, it is
necessary to determine whether any violations had occurred
during provisioning. As indicated above, penalty clauses are
also part of the SLA, and need to be agreed between the client
and the provider.

One of the main issues that the provider and the consumer
will have to agree during the SLA negotiation is the penalty
scheme or the sanctioning policies. Since both the service
provider and the client are ultimately businesses (rather than
consumers), they are free to decide what kind of sanctions
they will associate to the various types of SLA breaches, in
accordance with the weight of the parameter that was not
fulfilled. We define the following broad categories of violation:

• ‘All-or-nothing’ provisioning: provisioning of a service
meets all the SLOs – i.e. all of the SLO constraints must
be satisfied for a successful delivery of a service;

• ‘Partial’ provisioning: provisioning of a service meets
some of the SLOs – i.e. some of the SLO constraints
must be satisfied for a successful delivery of a service;

• ‘Weighted Partial’ provisioning: provision of a service
meets SLOs that have a weighting greater than a threshold
(identified by the client).

Monitoring can be used to detect whether an SLA has been
violated. Typically such violations result in a complete failure
– making SLA violations an ‘all-or-nothing’ process. In such
an event a completely new SLA needs to be negotiated, pos-
sibly with another service provider, which requires additional
effort on both the client and the service provider. Based on
this all-or-nothing approach, it is necessary for the provider to
satisfy all of the SLOs. This equates to a conjunction of SLO



terms. An SLA may contain several SLOs, where some SLOs
(e.g. at least two CPUs) may be more important than others
(e.g. more than 100 MBytes of hard disk space). During the
SLA negotiation phase, the importance of the different SLOs
may be established. Clients (and service providers) can then
react differently according to the importance of the violated
SLO. In the WS-Agreement specification [14], the importance
of particular terms is captured through the use of a ‘Business
Value’.

Weighted metrics can also be used to provide a flexible and
fair sanction mechanism, in case an SLA violation occurs.
Thus, instead of terminating the SLA altogether it might be
possible to re-negotiate, i.e. with the same service provider, the
part of the SLA that is violated. Again, the more important
the violated SLO, the more difficult (if not impossible) it will
be to re-negotiate (part of) the SLA.

IV. ECONOMICALLY ENHANCED RESOURCEMANAGER

The overall aim of the EERM is to isolate SORMA eco-
nomic layers from the technical ones and orchestrate both
economic and technical goals to achieve maximum economic
profit and resource utilisation. The main goals of the EERM
are:

• To combine technical and economic aspects of resource
management.

• Perform resource price calculations, taking into account
current market supply and demand, performance estima-
tions and business policies.

• To strengthen the economic feasibility of the Grid.
To provide a general solution that supports different scenarios
and business policies, the EERM should provide flexibility in
defining user (administrator) configurable rule-based policies,
to support:

Individual Rationality
An important requirement for a system is that it is
individually rational on both sides, i.e. both providers
and clients have to have a benefit from using the
system. This is a requirement for the whole system,
including features such as client classification or
dynamic pricing.

Revenue Maximisation
A key characteristic for SORMA providers is revenue
(utility) maximisation. The introduced mechanisms
can indeed improve the utility of both provider and
client.

Incentive Compatibility
Strategic behaviour of clients and providers can be
prevented if a mechanism is incentive compatible.
Incentive compatibility means that no other strategy
results in a higher utility than reporting the true
valuation.

Efficiency
There are different types of efficiency. The first one
considered here is that no participant can improve
its utility without reducing the utility of another par-
ticipant. The second efficiency criterion is allocative

efficiency: i.e. the EERM must maximise the sum of
individual utilities.

A. Architecture

The EERM’s architecture is shown in Figure 1. To place the
EERM in the context of the SORMA framework, we have also
shown the SORMA Grid Market Middleware (GMM) [15],
which provides the mechanisms to interact with the SORMA
market. Once resource usage has been agreed in the SORMA
market, a contract is sent to the EERM over the GMM. The
contract provides the EERM with input for resource allocation,
task execution and SLA enforcement activities. The EERM is
comprised of the following components (see Figure 1):

Fig. 1. EERM components

Economy Agent (EA)
The EA receives requests from SORMA market
agents over the GMM. For each request, the EA
checks whether the job is technically and econom-
ically feasible and calculates a price for the job
based on the category of client (e.g. a preferred
customer), resource status, economic policies, and
predictions of future resource availability (provided
by the Estimator Component). The EA interacts with
the upper SORMA economic layers in the SLA
negotiation process.

Estimator Component (EC)
The EC calculates the expected impact on the util-
isation of the Grid and is based on Kounev, Nou,
and Torres [16]. In short, the EC’s task is to avoid
performance loss due to resource overload [12].

System Performance Guard (SPG)
The SPG monitors resource performance and SLA



violations. If there is a danger that one or more SLAs
cannot be fulfilled, the SPG can take the decision of
suspending, migrating or cancelling jobs to ensure
the fulfilment of other, perhaps more important,
SLAs with the aim of maximising overall revenue.
Jobs can also be cancelled when additional capacity
is required to fulfil commitments to preferred clients.
The policies that dictate when to take action and
which types of jobs should be killed, migrated or
suspended are updated via the Policy Manager.

Policy Manager (PM)
The PM stores and manages policies concerning
client classification, job cancellation or suspension.
Policies are formulated using the Semantic Web Rule
Language (SWRL) [17]. The PM is an important part
of the EERM in that it allows behaviour to be adapted
at runtime. With the exception of the EC, all other
EERM components use the PM to obtain policies
that affect their decision making process.

Economic Resource Manager (ERM)
The ERM interacts with local resource managers and
is responsible for ensuring an efficient use of local
resources. The ERM is described in further detail in
Section IV-B.

Resource Monitoring (RM)
The RM provides resource information for system
and per-process monitoring. Resource information is
used by the EC, SPG, ERM and SLA components.
The RM is explained in further detail in Section IV-
C.

SLA Enforcement (SLAE)
The SLAE is tasked with monitoring SLA fulfill-
ment. The SLAE uses monitoring data from the
EERM and RM. When an SLA violation is detected,
the SLAE takes reactive measures such as SLA
re-negotiation or compensation retrieval based on
SLA penalty clauses. This component is explained
in further detail in Section IV-D.

B. Economic Resource Manager (ERM)

The ERM (Figure 2) is designed to interact with a range
of execution platforms (e.g. Condor, Sun Grid Engine, Globus
GRAM, or UNIX fork) and achieves this using Tycho [18]
connectors that communicate over the network to Resource
Agents (RA).

The RA translates XML messages from the ERM into
messages understood by the underlying platform (e.g. Condor).
In addition, RAs provide a consistent interface to the different
underlying resource fabrics. This means that another platform
can be adapted to SORMA by implementing an appropriate
RA plug-in that performs translations to and from the under-
lying resource manager’s native protocol. It is intended that
access to the existing middleware be constrained by firewall
rules, so that all interactions must go through the ERM. As
a single point of access, the ERM can provide additional
functionality that the underlying middleware may lack, for

Resource Access (Tycho)


JSDL Submission Interface


Job

Status


JSDL

Parser
 E

R
M



T

yc
ho




Resource

Agent


Plugin


Resource

Agent


Plugin
 JS
D

L 
to



N

at
iv

e


N
at

iv
e


pr
ot

oc
ol




Resources


Fig. 2. ERM implementation

example, by providing support for advanced reservations.
In the current prototype, resource agents include a plugin for

launching JSDL [19] jobs using GridSAM [20]. The approach
used to implement the ERM is complimented by a similar
approach used for resource monitoring.

C. Monitoring

In order to enable SLA enforcement, an understanding of
the current and recent state of the underlying resources is
required. Resource availability and utilisation can be sampled
periodically in a coarse-grained manner in order to providea
high-level understanding of general Quality of Service (QoS)
indicators. At other times it may be appropriate to target
particular and detailed attributes that reflect a given resources’
ability to fulfil a particular action, e.g. the execution of a
job. In addition notifications received from resources when
a particular threshold has been exceeded can help to identify
SLA violations. The EERM employs the GridRM [21] wide-
area distributed monitoring system to gather data requiredfor
SLA enforcement.

The GridRM design employs gateways for gathering data
from a number of different types of resources that make up
the Grid. Resources of interest can include all manner of
networked devices, from a remote sensor or satellite feed
through to a computational node or a communications link.
The Gateway is used internally, to a Grid-enabled site (the
local layer), to configure, manage and monitor internal re-
sources, while providing controlled external access to resource
information. The EERM is bound to its local GridRM Gateway
using the Tycho distributed registry and messaging system
(see figure 3). The EERM queries the gateway for real-time
and historical resource data, and registers interest to receive



different types of events that reflect changes in resource state
(e.g. completion of a submitted job, system load greater than
a specified threshold).

Resources may already provide legacy agents e.g. SNMP,
Ganglia, /proc, Condor. As long as the Gateway is installed
with a driver that supports the agents native protocol, thenall
resource data provided by the native agent can be retrieved.
In cases where an existing agent is not installed, a proprietary
agent can be used for information gathering. Using a native
agent means that existing resources can be monitored with
little or no modification. Alternatively, installation of the pro-
prietary GridRM agent implies some administrative overhead
for each resource, but can result in improved performance and
lower intrusiveness when gathering data.

Resource heterogeneity (agent and platform type) is hidden
from GridRM clients and hence the EERM; the Structured
Query Language (SQL) [22] is used to formulate monitoring
requests, and a SORMA-specific schema based on the GLUE
Schema [23] is used to group data and format the results
into a consistent form (semantically and in terms of the
values returned from different agents). Currently the SORMA
consortium have identified a number of core attributes that are
used for monitoring resources, enforcing SLAs, advertising
resources on the market and for match making purposes. The
core attributes include:

• CPU (architecture, number of, speed),
• Operating System (type, kernel version, shared libraries),
• Memory (total/free physical/virtual),
• Disk (total/free, network/local),
• Per-process execution statistics (start stop times, CPU

time, memory footprint, exit status).

The current set of core attributes are a starting point and
will evolve over time, as the requirements for more complex
SLA enforcement are understood.

As well as real-time information a need exists to capture
historical data so that the SLA enforcement component can
determine the likelihood of an SLA violation, based on past re-
source provision at a given site. The gateway can be instructed
to query particular core attributes at a given frequency and
store the results in its internal database. The consistent view
of resource data provided by the GridRM gateway means that
the SLA enforcement component is not exposed to resource
heterogeneity and hence can focus on performing its core
duties of SLA monitoring and enforcement.

D. SLA Enforcement

The aim of the SLA enforcement component is to detect
any SLA violation before it occurs, by evaluating the real
time data about a provider to determine if a trend can be
identified that fits in with a model that has shown, in the
past using historical data, to result in a possible violation.
Since each SLA would consist of several resource attributes,
the monitoring data collection will be for a metric that would
represent collected statistical information about the resource
providers past and current resource provision.

Fig. 3. The GridRM Gateway and relationship to the EERM

It is important to note that the SLA enforcement is not
just for the providers to meet their commitments, it has to be
monitored to validate that the consumers have met the SLA.
One of the most important aspects to monitor that are relevant
to consumers is the possibility of overuse of the resources than
that agreed in the SLAs.

The interaction between the EERM and the SLA Enforce-
ment component is described in figure 4. The process begins
when SLA Enforcement component receives a contract from
SORMA Contract Management (the element which creates
the contracts once a negotiation is agreed between providers
and customers). After this, the SLA is created and sent to the
EERM, which watches for its fulfillment. The EERM takes the
economic data from SLA Enforcement and the performance
data from Monitoring components to detect if an SLA is
being violated, and performs a selective violation of SLAs
to maximise the revenue.

On violation, the SLA Enforcement component detects
this and generates a notification for the SORMA economic
layers, in order to negotiate a new contract or give clients the
possibility of searching for another provider.

V. EXAMPLE SCENARIO

To explain the operations of SLA fulfillment using the
EERM, we have designed a simple conceptual scenario (see
Figure 5): A resource provider wishes to sell the CPU time of
four multi-processor machines. There are some free resources,
and some running tasks whose revenues are specified in their
SLAs. In order to simplify, there are two fixed economic
parameters:



:SLAEnforcement :EERM:Monitoring:ResourceFabrics:SORMAContractMgmt
LOOP:GetMonitoringData:MonitoringData:ResourceStatus:SLAviolation?:Selectiveviolation:Notifyviolation

:SendContract

:trytonegotiateanothercontractorchangeprovider

:WatchState(SLA)

Fig. 4. SLA Enforcement and EERM components interaction

Fig. 5. Enforcement of SLA fulfillment example scenario

• Penalty for SLA violation: four currency units per viola-
tion, specified in each SLA.

• Task migration: one currency unit per migration; an
indirect cost, calculated by the resource provider.

In the example scenario described in the upper schema
of Figure 5, a new task arrives, and its SLA specifies a
requirement for 4 CPUs and a revenue of 7. The incoming
task does not fit in any resource, and therefore risks breaking
the SLA. In response, the EERM could take three different
actions:

1) Deny resource allocation for the incoming task. This is

a non-economic response and means that the EERM has
fallen back to the same behaviour as traditional resource
management systems. Because the SLA has been agreed
previously, if this response is taken the incoming task
SLA will be broken and the provider will have to pay
a penalty of 4. Using the formulas proposed in section
III-A, the provider obtains a punctual gain of:

△G(t, R) =

m∑

i=1

Revi −

m∑

i=1

Peni = 23 − 4 = 19

2) Perform a selective SLA violation. In the middle schema
of Figure 5, the EERM determines that the first task in
R1 can be terminated due to the low revenue associated
with that task. As a result the incoming task is now able
to fit into R1. The punctual gain for the provider is:

△G′(t, R) = 29 − 4 = 25

3) Reallocate resources. In this particular case, there are
4 free CPUs, but they are scattered across the resource
bundle. Reallocating tasks to provide a single machine
with 4 CPUs may be cheaper than breaking the SLA. For
example, the lower schema of 5, shows task migration
which results in a new punctual gain of:

△G′(t, R) =

m∑

i=1

G′(Si) − M(S, R) = 30 − 2 = 28

By applying economic enhancements into resource manage-
ment, a provider can dramatically increase its revenue (47%in
the example) by choosing the correct policy for SLA brokering
or task reallocation. Determining the optimal solution fora
given scenario will depend on penalty and reallocation costs
as well as current resource availability.

VI. CONCLUSIONS ANDFUTURE WORK

The work reported in this paper is motivated by the need
to extend traditional resource management with economic



parameters to support emerging grid markets. Within a grid
market, resource providers must consider issues relating to cur-
rent market conditions, QoS, revenue maximisation, economic
sustainability and reputation, if they are to operate effectively.

In particular, this paper focuses on revenue maximisation us-
ing SLAs and describes how a strategic approach to managing
SLAs can be used to secure optimal profit in situations where
resources are scarce. Using our methods for selective SLA
fulfilment and violation, the resource provider can determine
which jobs should be pre-empted in favour of freeing up
resources for more lucrative SLAs. For example, it may be
more profitable to violate an existing SLA, and pay the
associated penalty, than it is to checkpoint and redistribute
existing jobs, so that all SLAs can be fulfilled.

A prototype EERM is introduced and its architecture de-
scribed. The EERM is a first attempt at providing strategic
SLA enforcement within a grid market and forms part of
the market mechanisms currently being implemented by the
SORMA project.

Future work will include the identification of policies and
parameters suitable for enforcing revenue maximisation given
a number of different resource scenarios. The aim is to
understand how to determine an optimal solution (or sub-
optimal if the computation cost is too great) across a resource
pool when complex policies and multiple economic parameters
are at play. Another line of work will address how EERMs
can be used to provide input to the market so that the
negotiation process between customers and providers results
in the generation of more accurate SLAs.

ACKNOWLEDGEMENT

We would like to thank Mark Baker, SSE, University of
Reading, for his comments during the writing of this paper.
This work is supported by the Ministry of Science and Tech-
nology of Spain and the European Union (FEDER funds) un-
der contract TIN2004-07739-C02-01 and Commission of the
European Communities under IST contract 034286 (SORMA).
Thanks are also due to Martijn Warnier and Thomas Quilli-
nan of Vrije University, Amsterdam, The Netherlands – for
discussions about types of violations that could arise in SLAs.

REFERENCES

[1] Self-organizing ICT Resource Management (SORMA). [Online].
Available: http://www.sorma-project.eu

[2] Information Society Technologies Programme. [Online]. Available:
http://www.cordis.lu/ist

[3] A. Oguz, A. T. Campbell, M. E. Kounavis, and R. F. Liao, “The Mobi-
ware Toolkit: Programmable Support for Adaptive Mobile Networking,”
IEEE Pesronal Communications Magazine, Special Issue on Adapting
to Network and Client Variability, 1998.

[4] G. Bochmann and A. Hafid, “Some Principles for Quality of Service
Management,” Tech. Rep., 1996.

[5] V. Deora, J. Shao, W. A. Gray, and N. J. Fiddian, “A qualityof service
management framework based on user expectations,”First International
Conference on Service Oriented Computing (ICSOC), Trento, Italy,
December 2003.

[6] A. Sahai, S. Graupner, V. Machiraju, and A. Moorsel, “Specifying and
Monitoring Guarantees in Commercial Grids through SLA,”Proceedings
of the 3rd IEEE/ACM CCGrid2003, 2003.

[7] K. Czajkowski, A. Dan, J. Rofrano, S. Tuecke, and M. Xu, “Agreement-
based Grid Service Management (OGSI-Agreement),”Grid Forum,
GRAAP-WG Author Contribution Draft, June 2003.

[8] K. Keahey and K. Motawi, “The Taming of the Grid: Virtual Application
Service,” Argonne National Laboratory Technical Memorandum No.
262, May 2003.

[9] L. Burchard, M. Hovestadt, O. Kao, A. Keller, and B. Linnert, “The
virtual resource manager: An architecture for sla-aware resource man-
agement,”In Proceedings of IEEE CCGrid 2004, Chicago, US, 2004.

[10] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy,
“A distributed resource management architecture that supports advance
reservation and co-allocation,”In Proceedings of the International
Workshop on Quality of Service, pp. 27–36, 1999.

[11] R. Al-Ali, A. Hafid, O. Rana, and D. Walker, “An Approach for QoS
Adaptation in Service-Oriented Grids,”Concurrency and Computation:
Practice and Experience Journal, vol. 16, no. 5, pp. 401–412, 2004.

[12] R. Nou, F. Julià, J. Guitart, and J. Torres, “Dynamic resource provision-
ing for self-adaptive heterogeneous workloads in smp hosting platforms,”
ICE-B 2007, International Conference on E-Business, Barcelona, Spain,
July 2007.

[13] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing
performance isolation accross virtual machines in xen,”Middleware
2006, Melbourne, Australia, Nov. 27 - Dec. 1 2006.

[14] Web Services Agreement specification. [Online]. Available:
http://www.ogf.org/documents/GFD.107.pdf

[15] L. Joita, O. F. Rana, P. Chacı́n, I. Chao, F. Freitag, L. Navarro, and
O. Ardaiz, “Application deployment using catallactic gridmiddleware,”
Middleware for grid computing, 2005.

[16] S. Kounev, R. Nou, and J. Torres, “Using QPN to add QoS to Grid
Middleware,” Universitat Politècnica de Catalunya, Tech. Rep., 2007.

[17] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,B. Grosof, and
M. Dean, “Swrl: A semantic web rule language combining owl and
ruleml,” W3C Member submission 21 may 2004, Tech. Rep., 2004.
[Online]. Available: http://www.w3.org/Submission/SWRL/

[18] M. Baker and M. Grove, “A virtual registry for wide-areamessaging,”
IEEE International Conference on Cluster Computing, September 2006.

[19] Job Submission Description Language (JSDL) Work Group. [Online].
Available: http://forge.gridforum.org/projects/jsdl-wg

[20] GridSAM, Grid Job Submission and Monitoring Web Service. [Online].
Available: http://gridsam.sourceforge.net/

[21] M. Baker and G. Smith, “Gridrm: an extensible resource monitoring
system,”IEEE International Conference on Cluster Computing, 2003.

[22] A. Eisenberg, J. Melton, K. Kulkarni, J. Michels, and F.Zemke,
“Sql:2003 has been published,”SIGMOD Record, vol. 33, no. 1, March
2004.

[23] S. Andreozzi, “Glue schema implementation for the ldapdata model,”
Instituto Nazionale Di Fisica Nucleare, Tech. Rep., September 2004.


