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Abstract—Cloud Computing markets arise as an efficient way
to allocate resources for the execution of tasks and services
within a set of geographically dispersed providers from different
organisations. Client applications and service providers meet in
a market and negotiate for the sales of services by means of the
signature of a Service Level Agreement. Depending on the status
of the demand, the provider is able to offer higher or lower prices
for maximising its profit. It is difficult to establish a profitable
pricing function in competitive markets, because there are several
factors that can influence in the prices. This paper deals with
the problem of offering competitive prices in the negotiation of
services in Cloud Computing markets. A Genetic Algorithms
approach is proposed, in which a naive pricing function evolves
to a pricing function that offers suitable prices in function of
the system status. Its results are compared with other pricing
strategies, demonstrating its validity. Index Terms—arket-based
cloud computing, genetic algorithms, pricingarket-based cloud
computing, genetic algorithms, pricingm

I. INTRODUCTION

At recent years, the big mainframes paradigm in which
users own their computing resources [1] is being progressively
transiting to an utility-driven paradigm, in which users do not
own resources and pay for the usage of remote resources [2].
Cloud Computing [3] is the most promising current implemen-
tation of Utility Computing in the business world, because it
provides some key features over classic utility computing, such
as elasticity to allow clients dynamically scale-up and scale-
down the resources in execution time, or the possibility of
customizing completely the software environment by acquiring
administrator rights without putting in risk the whole system.

Since Clouds are heterogeneous, elastic and scalable, large
systems are too complex to be managed centrally. Market-
based resource management is proposed to deal with the
complexity because the possibility of doing business will
motivate Service Providers to offer their resources in the
system and give a Quality of Service (QoS) according to their
real capacity. In addition, market mechanisms obligate the
users to adjust their reservations to their real space and time
requirements. Another advantage is that it is relatively easy to
implement in a decentralised architecture, whose participants
enter in the Market looking for the satisfaction of their own
necessities, and they do not need to know about the global
status of the system to maximise their utility.

Brokers that represent Service Providers or Clients enter in
a Cloud Computing market for selling or buying services or
resources. When a Client finds its requirements in the market,
a negotiation process is started to establish the terms of the
contract. If both parties reach an agreement, the terms of the
contract are specified in a Service Level Agreement (SLA)
and the Client can use the resource. During the usage of the
resources, the correct fulfilment of the terms of the SLA is
watched by a neutral entity, and penalises the buyers or the
sellers when they violate the SLA. Negotiating Brokers must
be provided with business models and intelligent behavior, so
they are able to take the best decisions for maximising the
utility of Clients or Providers in the market.

From the wide bunch of economic knowledge and behavior
of Market Brokers, this paper concretely deals with finding
the more suitable offer prices in each market status: Cloud
providers want to sell their services at high prices for maximis-
ing their benefit; however, clients have possibility of election,
and will choose the cheapest provider for the same QoS. The
freedom of election of the client depends on the status of the
demand [4]: providers can raise their prices when the demand
is high, and they must decrease prices when the demand is
lower than the offer. The actual price that the client pays for
the service is named Exercise Price.

Previous work from the authors demonstrated that providers
can acquire high benefits by pricing their services in function
of the demand [5]. This work assumes that markets are stable
and always behave rationally, according to some pre-defined
models. These assumptions can lead providers to underperform
economically in some special scenarios, such as very low or
very high offer/demand ratios. The proposed model considers
some parameters such as demand, work load of the resources,
or predictions about future load. However, there are some other
parameters that can influence the prices, which can be difficult
or impossible to include in the models because of their random
nature.

For dealing with this uncertainty problem, this paper pro-
poses Genetic Algorithms [6] as a model for analysing fi-
nancial markets [7]. The basic idea of Genetic Algorithms
is to have an extensive population of generic pricing models
(chromosomes) whose parameters are stored as genes. At the
initial moment, the genes are random, and some chromo-



somes are better than others (this is, their pricing models
provide prices that are more beneficial for providers). The
best chromosomes are selected in base to their proposed
prices, and they are reproduced and mutated by simulating
the natural evolution process. After some iterations of this
process, the population of chromosomes will tend to provide
prices that maximise the benefit of the provider. As in nature,
if the environment changes, the population will self-evolve to
become well adapted.

This paper is a step forward in the definition of pricing
strategies of Cloud Providers. Genetic Algorithms are used
because they are simple to implement, and enough dynamic for
modifying themselves (in comparison to previous models from
the authors, whose pricing results were dynamic, but the mod-
els were static). This dynamicity will allow the model to self-
adapt to changes in the market, and keep providers offering
beneficial prices in the long term. This paper proposes a new
Genetic Pricing Model that considers the relative simplicity
(compared to real financial markets) of Cloud Computing
Markets and evaluates it experimentally, by comparing it with
pricing models used in previous works from the authors.

The rest of the paper is organised as follows: after the related
work of Section II, Section III describes in detail the model
and algorithms used in the experiments. Section IV starts with
a concrete description of the experimentation framework and
the values used for the parameters of the model, and ends with
a visual description of the obtained results, compared with
several pricing models. At the end, the conclusions of the work
and the future trends in the related research are enumerated.

II. RELATED WORK

Computer models have been demonstrated more efficient
than humans when making decisions [8] in many market
scenarios, especially when a high volume of data must be
considered.

Previous work from the authors [5] introduces policies for
pricing in Cloud Computing markets. We demonstrated that
providers that adapt their prices in function of the competence,
time slot and SLA terms can achieve better Business Objec-
tives, such as Revenue Maximisation. However, the proposed
model is still too rigid, and assumes that other participants
in the market always behave rationally. In addition to the
flexibility in pricing, this paper also adds flexibility to the
pricing functions, by allowing their self-modification for a
better adaptation to changing market environments.

Genetic Algorithms are a widely used tool for the analysis of
financial markets due to their simplicity and capacity of adap-
tation to chaotic environments [9], [7]. However, the major
usage of Genetic Algorithms is the forecasting. Forecasting is
a valuable tool for the sales of futures in Cloud Computing, for
example batch jobs whose sales can be negotiated some days
before their execution. However, values of future predictions
are not so useful when selling Web Services, whose negotia-
tion and execution must be performed in real time according
to some existing Utility Computing markets [10]. This paper

intends to adapt pricing models to Web Services sales in Cloud
Computing.

CIiff [11] explored a continuous space of auction mecha-
nisms via Genetic Algorithms, with artificial trading agents
operating in evolved markets. His work does not rely on the
modelling of market agents but in the market itself, by using
Genetic Algorithms to tune market dynamics. It is important
to emphasize that agents and market are more stable against
market shocks, by evolving to suitable behaviors.

Fayek et al. [12] propose the usage of Genetic Algorithms
for evaluating the validity of a set of offers by calculating their
utility. Its application of Genetic Algorithms when modelling
the behavior of agents is worth considering. This paper intends
to be a step forward, by adding pricing models to the behavior
of the agents.

Chidambaran et al. [13] study the effectiveness of Genetic
Algorithms in Option Pricings, but our scenario is not strictly
an Option Sales Scenario [14]. Their solution is based in the
Black-Scholes algorithm [15], in which the input is not neces-
sarily available in Cloud Computing markets (e.g. stock prices,
risk-free rates, volatility, etc). The Genetic Model proposed in
this paper works with any available set of parameters that
could influence in the price of Service.

III. APPLYING GENETIC MODELS TO PRICING

Finding a good pricing model through Genetic Algorithms
implies solving the next three issues:

a) Define a chromosome: In this paper, the chromosome
is a naive function, whose parameters are some relevant data
that could influence in the price, as described in Section IV-A.
The relations and weights of these parameters are determined
by the genes of the chromosome, which are at least partially
different between the chromosomes. This function is called
pricing function, because its evaluation corresponds with the
price that a provider will ask for the sale of a Cloud service.
The result of the pricing function is named output of the
chromosome.

b) Evaluating the chromosomes: The chromosomes in a
population must be evaluated. That means that their output
must be compared to a reference value that is given by
a teaching entity or by the actual value when trying to do
predictions. In this paper, the reference value is the Exercise
Price.

c) Selection and reproduction of chromosomes: The
chromosomes with lowest results in the evaluation are dis-
carded from the population. Pairs of the best adapted chromo-
somes are selected to be reproduced by mixing their genomes,
so the population is replenished.

The rest of this section describes how the three enumerated
issues have been faced up.

A. Definition of chromosomes

Let P = {p1,...pn} be a set of n parameters that contain
some relevant information that could influence in the price
of a requested task (for example, the amount of demand, the
load of the system, the hour of day, the amount of resources,



etc.). It must be emphasized that some of these parameters
could influence, but actually do not necessarily do. Section
IV-A describes deeply the parameters used in the experiments
of this paper.

Let G = {g1,...gm } be a set of m = 2n2+2n+1 genes that
vary across different chromosomes and indicate the weights
and mathematical relations between the parameters. Equation
1 shows the pricing function expressed in each chromosome
by P and
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Assuming that the optimum pricing function is unknown
because it can change as the market evolves, Equation 1
describes a simple and generic function that is able to evolve to
specific approximation functions by assigning a proper value
set for GG. For example, Equation 1 can be transformed into
a linear function such as py® + 3p, + 6, a division of linear

functions such as m—f—o 3, or other types of nonlinear
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B. Evaluation of chromosomes

The reference value (RefVal) is the lowest price that the
buyer has chosen to pay in the last market competition, after
the sale is performed. That evaluation requires of the existence
of a Market Information System [16] that makes visible some
pricing information to the market participants.

scorin a chromosome at time ¢ is
|Pmcmgt }43 % — RefValy|. The closest to 0 is the
score the best price has proposed the chromosome at instant
t. However, this score is not enough to select or discard
chromosomes from a population, since it does not have any
temporal perspective: the chromosome that is proposing the
best prices during the last negotiations could be discarded by
only returning one inexact price at a given moment. To deal
with this issue, the score at time ¢ is weighted by a memory
factor M € [0, 1] with the past scores as shown in Equation
2.

Score;
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The higher the memory rate M is, the higher importance

is given to past price offers. The lower M is, the higher
importance is given to the last offer.

C. Selection and reproduction of chromosomes

After all the chromosomes are evaluated, the population is
sorted in function of the score of the chromosomes. A fixed
percentage of the last chromosomes in the sorted population
is discarded. At last, the missing population is restored with
descendants of the most effective chromosomes, which will
inherit most characteristics of their parents with small varia-
tions due to possible mutations. The chromosomes that will be
crossed for having offspring are chosen successively from the
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Fig. 1. Process of crossing two chromosomes and mix their genome in their
offspring. Genes with black background represent random mutations

most effective to the less effective ones, until the population
is restored again.

When two chromosomes are having offspring, a crossover
index between O and the length of the genome is chosen
randomly, and the genomes of the two parents are divided
in this index. The first division of the genome of parent 1 and
the last division of the genome of parent 2 are copied in the
genome of descendant 1. The first division of the genome of
parent 2 and the last division of the genome of parent 1 are
copied in the genome of descendant 2 (see Figure 1).

During the process of crossing and copying genomes, some
random mutations can occur, with very low probability: a gene
is multiplied by a random number with a Normal distribution,
whose mean value and standard deviation are 1.

IV. EVALUATION OF THE MODEL

Four Cloud providers are competing in a services market
whose demands are variable across the day (few demand in
the early morning, peaks of demand in the evening). Each of
the four providers has a different pricing strategy:

d) Fixed Pricing: Offered prices are the 5% between the
minimum price that the provider can offer in order to not
lose money (Reservation Price of the Seller, R Ps¢jje,) and the
maximum price that the client can pay in order to get benefit
by buying the service ([RP,yyer). Instead of 5%, any other
percentage could be chosen, but previous work demonstrated
that 5% gets good results in most of the demand scenarios
[5]. Although the seller knows its own RP, the buyer does
not communicate its RP to the provider, so it only can be
estimated in function to the historic prices and other market
data. Equation 3 shows the used pricing formula.

Pricepized = RPsclier + (pruyer - RReeller) -0.05 (3)

e) Random Pricing: Prices are offered randomly, in an
uniform distribution, between RPyy e, and RPsgje,. This is
not a real pricing model, but it is included in the experiments
to be compared with the genetic pricing models and show that
they do not behave randomly, as sometimes apparently do.

f) Utility Maximisation Price: Previous work [5] demon-
strated the advantages of using an utility function whose
maximisation leads to a beneficial offer price (see Equation
4). u,(S) is a sub-utility function that tends to O when the
proposed price is near the Reservation Price of the Seller and
tends to 1 when the proposed price is near the Reservation
Price of the Buyer. a(t) is the aggressiveness factor, that tends
to 0 when the resources are idle and to 1 when the resources



are in their maximum workload capacity. Previous work [5]
contains a detailed description of Equation 4, and explains its
idiosyncrasy.
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g) Genetic Pricing: Applies the genetic pricing algo-
rithm explained in Section III with the parameters and con-
stants described in Section IV-A. The offer price is the output
of the first chromosome in the list, which is ordered by the
calculated scores as explained in Sections III-B and III-C.
When deciding the size of the population of chromosomes
and the mutations rate, it must be considered the advantages
and inconveniences of the choice. Providers with a large
number of chromosomes and a small mutations rate are pretty
stable, but they are less capable to adapt quickly to changes
in the environment. On the other hand, providers with less
chromosomes and more mutations converge quicker to a good
solution, but they are less stable, and small changes in the
environment could make them bouncing to bad price offers.

U (S) = 0.5 + @)

A. Simulation environment

The simulation does not simulate a complete market en-
vironment, but mainly how providers behave under different
demand scenarios. In the simulation, clients send requests for
buying cloud resources to a simple market. These requests
contains information about the number of resources that the
client is willing to use, the Quality of Service and the time
slot in which the client will execute the tasks. The market
forwards the requests to the providers, which will return their
proposed price according to the information contained in the
requests. Finally, the client buys the resources of the provider
that returns the lowest price.

Each request includes information about the number of
CPUs required for the deployment of the task and the range of
QoS, which can be Gold, Silver, or Bronze. The provider will
make bigger efforts for fulfilling SLAs whose QoS range is
Gold. In case of system failure, Bronze SLAs will be violated
firstly. If this is not enough, Silver SLAs will be violated then
[17]. In compensation, the Reservation Price in Gold tasks is
25% higher than in Silver tasks and 66% than in Bronze tasks.

The frequency of requests is variable: from 2 tasks/hour
(off-peak hours) to a maximum (peak hour) that is changed
across the multiple simulations. The value of this maximum
varies from 2 to 32 tasks per hour. Each task can require
randomly from 1 to 4 CPUs, and only providers that have
free resources can accept an incoming task and offer a price.
Each provider has 16 CPUs.

The set of parameters, chosen by their influence in the final
price, is P = {Q,C,a(t)}, where @ is the QoS category
(Bronze = 1, Silver = 2 and Gold = 3), C is the number
of CPUs, and a(t) is the aggressiveness factor of Equation
4. The memory rate M (Equation 2) is 0.9. This value has
been chosen because it allows chromosomes to ascend in the
ordered population, and avoids that a chromosome falls down
if it reports only a bad offer price. Some previous tests revealed

that M does not have to be exactly 0.9: it also could have
similar values such as 0.8 or 0.95. Small values, such as 0.5,
make the system too unstable and the provider cannot converge
to a good solution.

Regarding the flexibility of the genetic algorithm, two types
of genetic providers have been tested: a flexible one, with
200 chromosomes and a mutation rate of 6%, and a rigid
provider with 500 chromosomes and a mutation rate of 1%.
Flexible provider means that it can converge quickly to a good
solution, but it is unstable and it forgets past experiences. Since
each chromosome has 25 genes (2n% +2n+ 1 when n = 3,
according to the number of elements of ﬁ), 200 chromosomes
in a same provider is enough diverse and it introduces a small
probability of redundancy. The quick change of population is
strengthened by setting the mutations rate to 6%: in average,
each new chromosome will have 1.5 mutations.

The rigid provider increases its number of chromosomes by
150% to add possibility of redundancy and, with a mutation
rate of 1%, only a mutation will occur for each 4 descen-
dants. As the experiments show, those values will make the
population of chromosomes more stable and uniform, and the
provider will converge slowly to offer competitive prices, but
it is more stable against noises.

For each chromosome evaluation and selection in both
rigid and flexible providers, the lowest 50% of the ordered
population is discarded and replenished with the descendants
of the other 50% of population. When populations are large
enough, this replacement proportion value could be also 40%-
60%, 60%-40%, or any other equilibrated rate that guarantees
that the best chromosomes during the last iterations are kept.

The chosen constant values of the experiments are not
important from a qualitative point of view, because the goal of
this research is to observe how variations can affect positively
or negatively on results. Because the experimental environment
is simulated, the goal is to show how, for example, adding
rigidness to the providers leads to more stability in the results,
but less capacity of adaptation. Future work will try to find the
best constant values for real market environments and evaluate
their quantitative data.

Several simulation sets, with same environments but dif-
ferent maximum tasks per hour, have been repeated and the
comparisons of revenues in providers have been commented.
5 weeks of sales in a competing market have been simulated,
but the first week is not counted for the statistics, because
it is considered a prudential training period for the genetic
providers.

Results are evaluated in terms of revenue: the client sends its
task to the provider that offers the best price, and the provider
earns the amount of money that is agreed between the two
parts.

B. Comparing genetic and utility-based dynamic pricings

Figure 2 shows the revenues of the four providers described
in Section IV. Random-pricing provider is the most inefficient
of all the providers, excepting when the market is extremely
overloaded and any price below the Reservation Price of



900

= *Fixed
e Utility
= Genetic
* Random

| L. L

2 <] .10 14 18 22 26 0
Max Tasks per hour

Fig. 2. Comparison of revenues between four types of pricing. A provider
with a flexible genome (200 chromosomes and 6% of mutations) is used.
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Fig. 3. Comparison of revenues between four types of pricing. A provider

with a rigid genome (500 chromosomes and 1% of mutations) is used.

the Buyer is accepted by the clients. The revenue of fixed-
pricing provider is increased linearly with the number of
maximum tasks per hour: at more tasks with fixed price, the
same proportion of revenue. The random nature of genetic
algorithms introduces some noises in the results, such as
the small perturbation in the revenue of providers when the
maximum tasks are 12 per hour.

Although utility-maximisation provider is a good solution
compared with fixed pricing, Figure 2 shows that the genetic
provider gets the highest revenue in most of the scenarios.
When the maximum number of tasks is high, both solutions
are similar. Genetic pricing showed its effectiveness mainly in
equilibrium markets, which is the status that markets tend to.
Both right and left extremes of the graph (respectively demand
and offer excess) are unrealistic scenarios.

C. Comparing genetic providers by their flexibility

Figure 3 shows how rigid genomes do not introduce so
much perturbation as flexible genomes, but it does not mean
that they are more suitable in terms of revenue maximisation.
To check which flexibility grade is more suitable in Cloud
computing markets, the same experiment is repeated with a
rigid and a flexible genetic provider competing in the same
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Fig. 4. Comparison of revenues when genetic providers with both rigid and
flexible genomes are competing.

market. Figure 4 shows the results of the experiment, and some
relevant information can be extracted from it:

o Two genetic providers add instability to the results. It is
because the genetic algorithm proposed in this market im-
itates the best pricing in each moment. Fixed and utility-
based pricings are predictable, if the genetic provider
takes their pricing attempts as input it will be much more
stable than if it takes the output of another genetic (and
unpredictable) provider.

« Within this instability scenario, a flexible genetic provi-
der earns more money than the rigid one, since it can
converge quicker to best solutions.

To illustrate this last statement, the accuracy of pricing
and speed of convergence of both flexible and rigid genetic
providers are measured. Figure 5 shows the difference of the
offered prices and the Exercise Price, and speed of conver-
gence of both rigid (upper graph) and flexible (lower graph)
genetic providers. If the difference is 0O, it means that the price
offered by the genetic provider is actually the Exercise Price.

Both figures show the influence of noises in the genetic
providers, which made them spontaneously evolve to offer
prices far from the Exercise Price. However, a provider with a
flexible genome is more stable against noises. The left part of
the graph in Figure 5 also shows that the rigid genetic provider
takes much more time in getting trained to be competitive in
its prices.

V. CONCLUSIONS AND FUTURE WORK

This paper has shown the effectiveness and capacity of adap-
tation of genetic algorithms for pricing in Cloud Computing
Markets. In a competitive environment, where providers can-
not know which strategy other providers will follow, genetic
providers earn up to the 100% more than utility-based dynamic
pricing providers, and up to 1000% more than a typical fixed
pricing provider.

The proposed genetic algorithm is easy to implement and it
is flexible enough to be used with a huge set of parameters P,
even when there is not evidence that some of the parameters
have a real influence in the price: the evolutionary selection
process will discard all the invalid parameters, so the proposed
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model can be used to make decisions in complex, even chaotic,
environments.

In unstable/unpredictable markets, the experiments clearly
showed that a provider with a flexible genome is more stable
against noises and rough changes, and evolve to competitive
pricings quicker than a provider with a rigid genome.

This work is a first proof of concept of genetic pricing for
Cloud Computing Markets whose results have been validated
by market simulations. A future line of work is testing the
proposed model in real Cloud computing market environments.
Another important line of work is creating a meta-genome
that is able to dynamically tune up some data about the
chromosomes and the population, such as the number of chro-
mosomes, the mutation rate, the memory rate of the scoring
process, etc. At last, new ways of representing the generic
pricing function must be explored, such as the defining more
complex the relations between the parameters of the function
of the chromosome, such as logarithms, sinus, derivatives, etc.
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