
Zero-code application metrics with
eBPF and Prometheus
An introduction to Grafana Beyla

Mario Macías Lloret
Nikola Grcevski
Promcon 2023
Berlin, Germany

Introduction

Instrumenting your uninstrumented application

Your
Application

?

Runtime (JVM,
.NET…)

Agent-based instrumentation

Agent

Your
application Metrics

Manual instrumentation

func myCode() {

 doSomething()
}

instrument()func myCode() {

 doSomething()
}

instrument()func myCode() {

 doSomething()
}

instrument()
Build

Instrumented
Application

Deploy

Instrumented

Applicati
on

Instrumented

Applicati
on

Linux OS

Beyla native eBPF auto-instrumentation

Metrics

Your
Application

Runtime & libs Grafana
BeylaeB

PF

E… B… P… what?

What’s not eBPF

SELECT interesting_stuff
FROM everywhere
WHERE source=‘what i want’

Your data
with nice
syntax &

semantics

What eBPF looks like?

eBPF

● Extended Berkeley Packet Filter

● JIT Virtual Machine at the Linux Kernel

● Can hook your probe programs to multiple events of the Kernel, libraries and

user-space programs
○ Lets you see (and even modify) the runtime memory

● You need to know how the memory is organized at a binary level
○ For each language, compiler, and architecture

■ Arguments

■ Data structures

■ Local variables

■ Return values

Example: trace each new TCP connection

int tcp_connect(struct sock *sk);

Linux Kernel User space

Processtcp_connect

BPF
probe

Beyla
(native)

Loads

maps
eBPF

traces

https://elixir.bootlin.com/linux/latest/C/ident/tcp_connect
https://elixir.bootlin.com/linux/latest/C/ident/sock
https://elixir.bootlin.com/linux/latest/C/ident/tcp_connect

eBPF advantages

● Fast: JIT compilation
● Stable

○ Programs are pre-verified before loading
■ Prevent unallowed memory accesses
■ Prevent memory loops

● Clean
○ Stopping (or crashing) the “monitor” frees the loaded resources.

eBPF Disadvantages

● Hard to debug (kprintf)

● Your probes are often dependent of the implementation details
○ Arguments in stack vs registers

○ Architecture/language/compiler conventions

○ Big endian vs little endian

○ etc…

● Changes in the inspected APIs can break your code

● User-space monitor program requires at least CAP_SYS_ADMIN privileges

Grafana Beyla

Grafana Beyla

● Automatic instrumentation of your services and clients
○ Go: HTTP, HTTPS & GRPC

■ Instruments Go executables, inserting User Probes at concrete symbols

(e.g. ServeHttp functions)

○ Other languages: HTTP & HTTPS

■ Instruments the Kernel and libraries with Kernel probes

○ More protocols to come…

Grafana Beyla

● Export data as

○ RED metrics (Request, Errors, Duration)

■ Prometheus

■ OpenTelemetry

○ OpenTelemetry traces

Currently supported Prometheus Metrics

http_server_duration_seconds_{count, sum, bucket}
http_client_duration_seconds_{count, sum, bucket}

http_server_request_size_bytes_{count, sum, bucket}
http_client_request_size_bytes_{count, sum, bucket}

rpc_server_duration_seconds_{count, sum, bucket}
rpc_client_duration_seconds_{count, sum, bucket}

(Also internal performance counters as prometheus metrics)

Demo!

Thank you for your attention!

https://grafana.com/oss/
https://github.com/grafana/beyla

https://grafana.com/oss/
https://github.com/grafana/beyla

