
Lies, damned lies, and request times
Nikola Grcevski – Mario Macias

PromCon 2023 – Berlin, Germany

Lightning talk

• A foo REST service that needs to respond under 100ms

type FooServer struct {
responseTime prometheus.Histogram

}

func (ps *FooServer) Foo(rw http.ResponseWriter, req *http.Request) {
start := time.Now()
fooHandler(rw, req)
ps.responseTime.Observe(time.Now().Sub(start).Seconds() * 1000)

}

● Using Grafana’s K6 to add some load and measure it

Let’s build a simple web service

Our SLO for
response time

Let’s visualize some prometheus metrics

(...)

http_req_duration : avg=111.09ms min=340µs med=88.1ms

max=1.14s p(90)=228.61ms p(95)=283.24ms

(...)

Http_reqs : 302188 503.622464/s

Let’s compare notes with what K6 saw

Prometheus
measured
AVG: ~20ms

Prometheus
measured
P95: ~63ms

Is Prometheus Go library lying?

In-code instrumentation

Couldn’t we trace at least this?

Is Prometheus Go library lying?

In-code instrumentation

Couldn’t we trace at least this?
eBPF!!

Grafana Beyla reported timings

K6: 111ms

K6: 283ms

Not yet perfect!

Prometheus SDK

Grafana Beyla

User perception

Thank you!
github.com/grafana/beyla

