
OpenTelemetry metrics for Python
without the remorse i.e. with eBPF
An introduction to Grafana Beyla

Mario Macías @MaciasUPC
Nikola Grcevski
PyCon 2023
Dublin, Ireland

Table of contents

● Introduction

● OpenTelemetry

● eBPF

● Grafana Beyla

● Performance comparison

● Conclusions

Introduction

Grafana AppO11y

● App(lication) O(bservabilit)y

Grafana AppO11y

● App(lication) O(bservabilit)y

Requirement: your application must be instrumented

Your application

Your business
logic

Web
framework

Telemetry

Internet

Metrics and
traces

collector
(e.g. Grafana!)

aggregate
& report

OpenTelemetry

● Collection of APIs, SDKs, and tools
○ Data format

○ Remote API format

○ Set of language libraries

● Instrument, generate, collect, and export telemetry data
○ Metrics

○ Logs

○ Traces

● Open

● Vendor neutral

OpenTelemetry & Python

● Automatic instrumentation

pip install opentelemetry-distro opentelemetry-exporter-otlp
opentelemetry-bootstrap -a install

OTEL_SERVICE_NAME=your-service-name \
OTEL_TRACES_EXPORTER=console,otlp \
OTEL_METRICS_EXPORTER=console \
OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=0.0.0.0:4317 \
opentelemetry-instrument python myapp.py

OpenTelemetry & Python
● Manual instrumentation

provider = TracerProvider()

processor = BatchSpanProcessor(ConsoleSpanExporter())

provider.add_span_processor(processor)

trace.set_tracer_provider(provider)

tracer = trace.get_tracer("my.tracer.name")

def do_work():

 with tracer.start_as_current_span("span-name") as span:

 print("doing some work...")

 # When the 'with' block goes out of scope, 'span' is closed for you

eBPF

eBPF

● JIT Virtual Machine at the Linux Kernel
○ Make Linux Kernel programmable!

● Can hook your probe programs to multiple

events of the Kernel, libraries and user-space

programs
○ Lets you see (and even modify) the runtime memory

Example: trace each new TCP connection

int tcp_connect(struct sock *sk);

Linux Kernel User space

Processtcp_connect

BPF
probe

Grafana
Beyla

Loads

maps
eBPF

traces

https://elixir.bootlin.com/linux/latest/C/ident/tcp_connect
https://elixir.bootlin.com/linux/latest/C/ident/sock
https://elixir.bootlin.com/linux/latest/C/ident/tcp_connect

eBPF advantages

● Fast: JIT compilation
● Stable

○ Programs are pre-verified before loading
■ Prevent unallowed memory accesses
■ Prevent memory loops

● Clean
○ Stopping (or crashing) the “monitor” frees the loaded resources.

eBPF Disadvantages

● Hard to debug (kprintf)

● Your probes are often dependent of the implementation details
○ Arguments in stack vs registers

○ Architecture/language/compiler conventions

○ Big endian vs little endian

○ etc…

● Changes in the inspected APIs can break your code

● User-space monitor program requires at least CAP_SYS_ADMIN

privileges

Grafana

Prometheus
Linux OS

Beyla native eBPF auto-instrumentation

Your
Application

Runtime & libs Grafana
BeylaeB

PF
OTEL Collector

Metrics & spans

Running Beyla

export BEYLA_EXECUTABLE_NAME=.

export OTEL_EXPORTER_OTLP_ENDPOINT=0.0.0.0:4317

sudo -E beyla

Performance considerations

Motivation: is Python OpenTelemetry slow?

https://github.com/GoogleCloudPlatform/bank-of-anthos/issues/356

● They didn’t use batch

processor

● Simple Export Span processor:

One connection/export per

trace!

https://github.com/GoogleCloudPlatform/bank-of-anthos/issues/356

Is Python OpenTelemetry slow? (II)

● Problem was partially in an error in the

Benchmark creation

● But there is still visible overhead of

Running OpenTelemetry

● Suggestion: add sampling

https://github.com/open-telemetry/opentelemetry-python/issues/3049

https://github.com/open-telemetry/opentelemetry-python/issues/3049

Is Python OpenTelemetry slow? (III)

Spoiler: no, it isn’t.

… but can we do it better?

Testing scenario

● HTTP server

● We eliminated as much as noise as possible
○ Bare metal hardware, avoiding overhead of virtualization/docker-proxy network

latencies

○ Pinning to separate cores to be able to get fair estimates of CPU utilization

○ Turning off CPU throttling and turbo boost

● Compared 3 scenarios
○ Uninstrumented service

○ Service instrumented with OpenTelemetry Flask autoinstrumenter

○ Service instrumented with Beyla

Performance comparison

Performance comparison

Performance comparison

Performance comparison

Impact in resources

Conclusions

Beyla vs OpenTelemetry SDKs

● Use OpenTelemetry SDKs when…
○ You need fine-grained details about your traces

○ Performance is not a blocker

● Use Beyla when…
○ You can’t spend time instrumenting your legacy applications

○ Your language/runtime version is unsupported by the SDKs

○ Performance concerns

Decoupling trace/metric generation from your workload

Instance 1

Your business
logic

Web
framework

Telemetry

Instance 2

Your business
logic

Web
framework

Telemetry

Instance 1

Your
business

logic

Web
framework

Instance 1

Your
business

logic

Web
framework

eBPF probes

Grafana
Beyla

If observability slows down,
you need to scale your app

If observability slows down,
you can scale Beyla

Thank you for your attention!

Beyla 1.0 General Availability
November 15th

https://grafana.com/oss/beyla-ebpf/
https://github.com/grafana/beyla

https://grafana.com/oss/beyla-ebpf/
https://github.com/grafana/beyla

