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Requirement: your application must be instrumented
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OpenTelemetry

● Collection of APIs, SDKs, and tools
○ Data format

○ Remote API format

○ Set of language libraries

● Instrument, generate, collect, and export telemetry data
○ Metrics

○ Logs

○ Traces

● Open

● Vendor neutral



OpenTelemetry & Python

● Automatic instrumentation

pip install opentelemetry-distro opentelemetry-exporter-otlp
opentelemetry-bootstrap -a install

OTEL_SERVICE_NAME=your-service-name \
OTEL_TRACES_EXPORTER=console,otlp \
OTEL_METRICS_EXPORTER=console \
OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=0.0.0.0:4317 \
opentelemetry-instrument python myapp.py



OpenTelemetry & Python
● Manual instrumentation

provider = TracerProvider()

processor = BatchSpanProcessor(ConsoleSpanExporter())

provider.add_span_processor(processor)

trace.set_tracer_provider(provider)

tracer = trace.get_tracer("my.tracer.name")

def do_work():

    with tracer.start_as_current_span("span-name") as span:

        print("doing some work...")

        # When the 'with' block goes out of scope, 'span' is closed for you



eBPF



eBPF

● JIT Virtual Machine at the Linux Kernel
○ Make Linux Kernel programmable!

● Can hook your probe programs to multiple 

events of the Kernel, libraries and user-space 

programs
○ Lets you see (and even modify) the runtime memory



Example: trace each new TCP connection

int tcp_connect(struct sock *sk);

Linux Kernel User space

Processtcp_connect

BPF 
probe

Grafana
Beyla

Loads

maps 
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traces

https://elixir.bootlin.com/linux/latest/C/ident/tcp_connect
https://elixir.bootlin.com/linux/latest/C/ident/sock
https://elixir.bootlin.com/linux/latest/C/ident/tcp_connect


eBPF advantages

● Fast: JIT compilation
● Stable

○ Programs are pre-verified before loading
■ Prevent unallowed memory accesses
■ Prevent memory loops

● Clean
○ Stopping (or crashing) the “monitor” frees the loaded resources.



eBPF Disadvantages

● Hard to debug (kprintf)

● Your probes are often dependent of the implementation details
○ Arguments in stack vs registers

○ Architecture/language/compiler conventions

○ Big endian vs little endian

○ etc…

● Changes in the inspected APIs can break your code

● User-space monitor program requires at least CAP_SYS_ADMIN 

privileges
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Running Beyla

export BEYLA_EXECUTABLE_NAME=.

export OTEL_EXPORTER_OTLP_ENDPOINT=0.0.0.0:4317

sudo -E beyla



Performance considerations



Motivation: is Python OpenTelemetry slow?

https://github.com/GoogleCloudPlatform/bank-of-anthos/issues/356

● They didn’t use batch

processor

● Simple Export Span processor:

One connection/export per

trace!

https://github.com/GoogleCloudPlatform/bank-of-anthos/issues/356


Is Python OpenTelemetry slow? (II)

● Problem was partially in an error in the 

Benchmark creation

● But there is still visible overhead of 

Running OpenTelemetry

● Suggestion: add sampling

https://github.com/open-telemetry/opentelemetry-python/issues/3049

https://github.com/open-telemetry/opentelemetry-python/issues/3049


Is Python OpenTelemetry slow? (III)

Spoiler: no, it isn’t.

… but can we do it better?



Testing scenario

● HTTP server

● We eliminated as much as noise as possible
○ Bare metal hardware, avoiding overhead of virtualization/docker-proxy network 

latencies

○ Pinning to separate cores to be able to get fair estimates of CPU utilization

○ Turning off CPU throttling and turbo boost

● Compared 3 scenarios
○ Uninstrumented service

○ Service instrumented with OpenTelemetry Flask autoinstrumenter

○ Service instrumented with Beyla
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Impact in resources



Conclusions



Beyla vs OpenTelemetry SDKs

● Use OpenTelemetry SDKs when…
○ You need fine-grained details about your traces

○ Performance is not a blocker

● Use Beyla when…
○ You can’t spend time instrumenting your legacy applications

○ Your language/runtime version is unsupported by the SDKs

○ Performance concerns



Decoupling trace/metric generation from your workload
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Thank you for your attention!

Beyla 1.0 General Availability
November 15th

https://grafana.com/oss/beyla-ebpf/ 
https://github.com/grafana/beyla  

https://grafana.com/oss/beyla-ebpf/
https://github.com/grafana/beyla

